Causal Discovery for Max-Linear Bayesian Networks

Francesco Nowell

TU Berlin

20.08.2025

About

A PC Algorithm for Max-Linear Bayesian Networks (FN+ 2025)

https://arxiv.org/abs/2508.13967

Carlos Améndola (TU Berlin)

Ben Hollering (MPI-MiS Leipzig)

Preliminaries

What is Causal Discovery?

Structural Equation Models

Let $\mathcal{G} = (V, E)$ be a directed acyclic graph with $V = \{1, \dots n\}$.

A random vector $X = (X_1, \dots X_n)$ is distributed according to a structural equation model on \mathcal{G} if

$$X_i = f_i(X_{pa(i)}, \varepsilon_i) ,$$

where pa(i) is the set of parents of i and ε_i is the (Gaussian) error at i.

Structural Equation Models

Let $\mathcal{G} = (V, E)$ be a directed acyclic graph with $V = \{1, \dots n\}$.

A random vector $X = (X_1, ..., X_n)$ is distributed according to a structural equation model on \mathcal{G} if

$$X_i = f_i(X_{pa(i)}, \varepsilon_i) ,$$

where pa(i) is the set of parents of i and ε_i is the (Gaussian) error at i.

Example (Linear structural equation model)

$$X_1 = \varepsilon_1$$

$$X_2 = \varepsilon_2$$

$$X_3 = c_{13}X_1 + c_{23}X_2 + \varepsilon_3$$

Figure: The collider DAG

Intuitively: Arrows represent causal relationships.

Causal Discovery

TASK: Given data which comes from a SEM X on \mathcal{G} , recover \mathcal{G} .

IDEA: relate conditional independence in X to combinatorial separation criteria in \mathcal{G} .

Example: d-separation for linear SEMs (Verma and Pearl, 1990 [6])

Causal Discovery

TASK: Given data which comes from a SEM X on \mathcal{G} , recover \mathcal{G} .

IDEA: relate conditional independence in X to combinatorial separation criteria in \mathcal{G} .

Example: d-separation for linear SEMs (Verma and Pearl, 1990 [6])

Definition

Two nodes $i, j \in V$ in a DAG are d-connected given $K \subset V \setminus ij$ if there exists an undirected path π from i to j such that:

- Any center node of any collider along π lies in $K \cup an(K)$
- No non-collider along π lies in K.

If no d—connecting path exists, we write $[i \perp_d j | K]$ and say that i and j are d—separated given K.

d-separation:examples

Connected: 2 and 5, 2 and 7, 5 and 6 Separated: 2 and 3, 3 and 4, 1 and 4

d-separation:examples

Connected: 2 and 3, 2 and 1, 1 and 7 Separated: 2 and 7, 2 and 4, 1 and 4

d-separation:examples

Connected: 2 and 4, 1 and 4, 1 and 2

Linear SEMs and d-separation

Theorem

Linear SEMs are faithful to d-separation, i.e.

$$[X_i \perp \!\!\! \perp X_j \mid X_K] \quad holds \ in \ X \quad \Longleftrightarrow \quad [i \perp_d j \mid K] \quad holds \ in \ \mathcal{G}$$
 (1)

for any X distributed according to a linear SEM on \mathcal{G} .

Equivalently, the entire CI structure of X is encoded in its d-separation $Global\ Markov\ property$.

$$global_d(\mathcal{G}) := \{ [i \perp j \mid K] \quad \text{s.t.} \quad [i \perp_d j \mid K] \text{ holds in } \mathcal{G} \}. \tag{2}$$

The PC algorithm (Spirtes and Glymour,[5])

Constraint based causal discovery algorithm.

Input: A method for testing CI in a distribution X on \mathcal{G} faithful to \perp_d . (equivalently: $\operatorname{global}_d(\mathcal{G})$)

Output: A partially oriented graph approximating \mathcal{G}

Step 1: Reconstruct the undirected skeleton of \mathcal{G} by querying global_d(\mathcal{G}). (Skeleton Retrieval)

Step 2: Orient the unshielded colliders in the skeleton (Edge Orientation)

The PC algorithm (Spirtes and Glymour,[5])

Constraint based causal discovery algorithm.

Input: A method for testing CI in a distribution X on \mathcal{G} faithful to \perp_d . (equivalently: global_d(\mathcal{G}))

Output: A partially oriented graph approximating \mathcal{G}

Step 1: Reconstruct the undirected skeleton of \mathcal{G} by querying global_d(\mathcal{G}). (Skeleton Retrieval)

Step 2: Orient the unshielded colliders in the skeleton (Edge Orientation)

Theorem

PC outputs a representative of the Markov equivalence class of \mathcal{G} . Its worst-case complexity is in $\mathcal{O}(n^{d+2})$, where n = |V| and $d := \max_{v \in V} \operatorname{indeg}(v)$.

PC algorithm example: Skeleton retrieval

Consider the diamond DAG \mathcal{G}

and its d-separation global markov property

$$\mathrm{global}_d(\mathcal{G}) := \Big\{ [2 \perp\!\!\!\perp 3 \mid 1] \ , [1 \perp\!\!\!\perp 4 \mid 23] \Big\}$$

PC algorithm example: Skeleton retrieval

$$\operatorname{global}_d(\mathcal{G}) := \left\{ \begin{array}{c|c} 2 \perp \!\!\! \perp 3 \mid 1 \end{array} \right. , \, \begin{bmatrix} 1 \perp \!\!\! \perp 4 \mid 23 \end{bmatrix} \, \right\}$$

"Start with the complete graph and delete the edge $\{i, j\}$ whenever $[i \perp \!\!\! \perp j \mid K] \in \operatorname{global}_d(\mathcal{G})$ for some K"

PC algorithm example: Edge orientation

$$\operatorname{global}_d(\mathcal{G}) := \left\{ \ [2 \perp\!\!\!\perp 3 \mid 1] \ \ , \ [1 \perp\!\!\!\perp 4 \mid 23] \ \right\}$$

"For any unshielded triple $\{i, j, k\}$: orient as $i \to j \leftarrow k$ if $[i \perp \!\!\! \perp j \mid k] \not\in \operatorname{global}_d(\mathcal{G})$."

What is a Max-Linear Bayesian Network?

Max-Linear Bayesian Networks (MLBNs)

Let \mathcal{G} be DAG on n nodes with edge weights $c_{ij} \geq 0$ for $i \to j \in \mathcal{G}$. A random vector $X = (X_1, \dots X_n)$ is distributed according to a max-linear model on \mathcal{G} if

$$X_i = \bigvee_{j \in \text{pa}(i)} c_{ij} X_j \vee Z_i, \qquad c_{ij}, Z_i \ge 0$$
(3)

where $\vee = \max$, pa(i) is the set of parents of i in \mathcal{G} , and the Z_i are independent, atom-free, continuous random variables.

Max-Linear Bayesian Networks (MLBNs)

Let \mathcal{G} be DAG on n nodes with edge weights $c_{ij} \geq 0$ for $i \to j \in \mathcal{G}$. A random vector $X = (X_1, \dots X_n)$ is distributed according to a max-linear model on \mathcal{G} if

$$X_i = \bigvee_{j \in \text{pa}(i)} c_{ij} X_j \vee Z_i, \qquad c_{ij}, Z_i \ge 0$$
(3)

where $\vee = \max$, pa(i) is the set of parents of i in \mathcal{G} , and the Z_i are independent, atom-free, continuous random variables.

Example

$$X_1 = Z_1$$

$$X_2 = c_{12}X_1 \lor Z_2 = \max(c_{12}X_1, Z_2)$$

$$X_3 = c_{13}X_1 \lor Z_3 = \max(c_{13}X_1, Z_3)$$

$$X_4 = c_{24}X_2 \lor c_{34}X_3 \lor Z_4$$

$$= \max(c_{24}X_2, c_{34}X_3, Z_4)$$

Challenges of the Max-Linear setting

The conditional independence structure of a MLBN depends on the choice of edge weights:

The CI statements which hold are $\left\{ \begin{array}{ll} \left\{1 \perp \!\!\! \perp 3|2\right\} & \text{if } c_{13} \leq c_{12}c_{23} \\ \emptyset & \text{if } c_{13} > c_{12}c_{23}. \end{array} \right.$

In particular: MLBNs are **not** faithful to d-separation.

Challenges of the Max-Linear setting

The conditional independence structure of a MLBN depends on the choice of edge weights:

The CI statements which hold are $\left\{ \begin{array}{ll} \left\{1 \perp \!\!\! \perp 3|2\right\} & \text{if } c_{13} \leq c_{12}c_{23} \\ \emptyset & \text{if } c_{13} > c_{12}c_{23}. \end{array} \right.$

In particular: MLBNs are **not** faithful to d-separation. This motivated the C^* -separation criterion of Améndola et. al [2].

Let (\mathcal{G}, C) be a weighted DAG with vertex set V and edge set E. For $i, j \in V$, let P(i, j) denote the set of all directed paths from i to j.

Let (\mathcal{G}, C) be a weighted DAG with vertex set V and edge set E. For $i, j \in V$, let P(i, j) denote the set of all directed paths from i to j.

- A path $\pi \in P(i,j)$ is *critical* in (\mathcal{G},C) if its weight $\omega_C(\pi) = \prod_{e \in \pi} c_e$ is maximal over all paths in P(i,j).

Let (\mathcal{G}, C) be a weighted DAG with vertex set V and edge set E. For $i, j \in V$, let P(i, j) denote the set of all directed paths from i to j.

- A path $\pi \in P(i,j)$ is *critical* in (\mathcal{G},C) if its weight $\omega_C(\pi) = \prod_{e \in \pi} c_e$ is maximal over all paths in P(i,j).
- For $K \subset V$, the *critical DAG* $\mathcal{G}_K^*(C)$ is the graph with vertex set V and edges determined by the condition

 $i \to j \in \mathcal{G}_K^*(C) \iff |P(i,j)| \ge 1$ and no critical directed path from i to j intersects K.

Let (\mathcal{G}, C) be a weighted DAG with vertex set V and edge set E. For $i, j \in V$, let P(i, j) denote the set of all directed paths from i to j.

- A path $\pi \in P(i,j)$ is *critical* in (\mathcal{G},C) if its weight $\omega_C(\pi) = \prod_{e \in \pi} c_e$ is maximal over all paths in P(i, j).
- For $K \subset V$, the *critical DAG* $\mathcal{G}_K^*(C)$ is the graph with vertex set V and edges determined by the condition

$$i \to j \in \mathcal{G}_K^*(C) \iff |P(i,j)| \ge 1$$
 and no critical directed path from i to j intersects K .

- Two nodes $i, j \in V$ are C^* -connected given $K \subset V \setminus ij$ if there exists an i-j path in $\mathcal{G}_K^*(C)$ of one of the five types below.

20.08.2025

C^* -separation:part II

Let $i, j, K \subset V$. If no C^* -connecting path exists in $\mathcal{G}_K^*(C)$, we say that i and j are C^* -separated given K, and write $[i \perp_{C^*} j \mid K]$.

C^* -separation:part II

Let $i, j, K \subset V$. If no C^* -connecting path exists in $\mathcal{G}_K^*(C)$, we say that i and j are C^* -separated given K, and write $[i \perp_{C^*} j \mid K]$.

Example

Let (\mathcal{G}, C) be the diamond from Example 1 with C chosen such that $1 \to 3 \to 4$ is the unique critical 1-4 path.

"1 and 4 are C^* -connected given 2"

 $\mathcal{G}^*_{\{3\}}(C)$

 $[1 \perp_{C^*} 4 \mid 3]$

C^* -separation: part III

Theorem ([2], Theorem 6.2)

MLBNs are faithful to C^* -separation. If X is distributed according to a MLBN on \mathcal{G} , then

$$[i \perp_{C^*} j \mid K] \text{ holds in } (\mathcal{G}, C) \iff [X_i \perp X_j \mid X_K] \text{ holds in } X$$

In other words,

$$global_{C^*}(\mathcal{G}, C) = \{ [i \perp j | K] \text{ s.t } [i \perp_{C^*} j \mid K] \text{ holds in } (\mathcal{G}, C) \}$$

encodes the entire CI information of X.

C^* -separation: part III

Theorem ([2], Theorem 6.2)

MLBNs are faithful to C^* -separation. If X is distributed according to a MLBN on \mathcal{G} , then

$$[i \perp_{C^*} j \mid K] \text{ holds in } (\mathcal{G}, C) \iff [X_i \perp X_j \mid X_K] \text{ holds in } X$$

In other words,

$$global_{C^*}(\mathcal{G}, C) = \{ [i \perp j | K] \text{ s.t } [i \perp_{C^*} j \mid K] \text{ holds in } (\mathcal{G}, C) \}$$

encodes the entire CI information of X.

Theorem ([2], Corollary 5.9)

For any choice of weights C:

$$\operatorname{global}_d(\mathcal{G}) \subset \operatorname{global}_*(\mathcal{G}, C)$$

Our contribution

In our work "A PC algorithm for Max-Linear Bayesian Networks", we...

- Investigate the output of the PC algorithm upon replacing $global_d(\mathcal{G})$ with $global_*(\mathcal{G}, C)$.
- Introduce a modified PC algorithm for Causal Discovery in MLBNs.
- Develop a new edge orientation rule which allows for additional identifiability.
- Implement the algorithm in julia and perform tests.

Skeleton retrieval and the weighted transitive reduction

The PC algorithm deletes additional edges!

Consider the 21-diamond with edge weights chosen such that $c_{24} < c_{21}c_{13}c_{34}$ and corresponding structural equations:

The set of conditional independence statements which hold in $X = (X_1, \dots X_4)$ is

$$\begin{array}{l} 1 \perp\!\!\!\perp 4|\{3\} \ , \ 1 \perp\!\!\!\perp 4|\{2,3\} \\ \\ 2 \perp\!\!\!\!\perp 3|\{1\} \ , \ 2 \perp\!\!\!\!\perp 3|\{1,4\} \\ \\ 2 \perp\!\!\!\!\perp 4|\{1\} \ , \ 2 \perp\!\!\!\!\perp 4|\{3\} \ , \ 2 \perp\!\!\!\!\perp 4|\{1,3\}. \end{array}$$

Thus...

The PC algorithm deletes additional edges

Reason: $c_{24} < c_{21}c_{13}c_{34}$ implies that $2 \to 4$ is not *critical* in (\mathcal{G}, C) .

The PC algorithm deletes additional edges

Reason: $c_{24} < c_{21}c_{13}c_{34}$ implies that $2 \to 4$ is not *critical* in (\mathcal{G}, C) . Skeleton retrieval no longer retrieves the undirected skeleton of \mathcal{G} . This is a feature, not a bug!

Weighted Transitive Reduction

The weighted transitive reduction of (\mathcal{G}, C) is the weighted DAG $(\mathcal{G}_C^{\mathrm{tr}}, C^{tr})$ on n nodes with weighted edges determined as follows:

$$i \to j \in \mathcal{G}_C^{\mathrm{tr}}$$
 with weight c_{ij} :

The edge $i \to j$ is the unique critical path from i to j in \mathcal{G} .

Theorem (FN + 2025)

 $\mathcal{G}_{C}^{\mathrm{tr}}$ is the sparsest subgraph of \mathcal{G} capable of encoding the same CI statements as (\mathcal{G}, C) .

Skeleton Retrieval in MLBNs

Theorem (FN + 2025)

Applying the Skeleton Retrieval Step of the PC algorithm to the set

$$\operatorname{global}_*(\mathcal{G}, C) = \left\{ [i \perp \!\!\! \perp j | K] \text{ s.t } [i \perp_{C^*} j \mid K] \text{ holds in } (\mathcal{G}, C) \right\}$$

retrieves the undirected skeleton of $\mathcal{G}_C^{\mathrm{tr}}$.

With a modified edge orientation step, the unshielded colliders of $\mathcal{G}_C^{\text{tr}}$ can also be determined in polynomial time.

The PCstar algorithm

Induced cycles* can be oriented!

 \mathcal{G}_1 and \mathcal{G}_2 are Markov equivalent w.r.t \perp_d : $global_d(\mathcal{G}_1) = global_d(\mathcal{G}_2)$

However their C^* -Markov properties differ for any choice of weights.

More generally: *Induced cycles* of \mathcal{G} containing a unique collider triple may be oriented under certain additional assumptions!

PCSTAR

Algorithm 1: PCSTAR

Input: A complete set of CI statements $global_*(\mathcal{G}, C)$ coming from a graphical model faithful to C^* -separation

Output: A CPDAG approximating the sparsest graph with the same Markov property as (\mathcal{G}, C) for an appropriate choice of weights

1 Recover $\text{skel}(\mathcal{G}_C^{\text{tr}})$ by applying skeleton retrieval to $\text{global}_*(\mathcal{G}, C)$.

2 Detect and orient the unshielded colliders

3 Optional: Orient all identifiable induced cycles

Theorem (FN + 2025)

The output of PCSTAR is a CPDAG with the same undirected skeleton, unshielded colliders, and orientable induced cycles as $\mathcal{G}_C^{\mathrm{tr}}$. Without the optional cycle orientation step, its complexity is $\mathcal{O}(n^{d+2})$, where n = |V| and $d = \max_{v \in V} \mathrm{indeg}(v)$.

Implementation and experiments

We implemented PCSTAR in julia and ran it on data produced by randomly generated DAGs:

V	d	$\#$ edges of \mathcal{G}	$\#$ edges of $\mathcal{G}_C^{\mathrm{tr}}$	# recovered edges (w/o cycle orientation)	# recovered edges (with cycle orientation)
10	2	9.17	8.66	3.88	4.43
	3	13.13	10.54	6.38	7.54
	4	16.13	11.57	6.99	8.33
	5	19.63	12.15	6.94	8.60
15	2	15.63	14.89	8.53	9.58
	3	17.46	15.95	10.02	11.31
	4	22.74	18.21	12.83	14.59
	5	28.30	19.61	14.17	15.92
20	2	20.36	19.74	11.51	12.47
	3	22.57	21.31	13.74	15.32
	4	28.13	24.38	17.85	20.14

https://github.com/fpnowell/starskeleton

Caveats and future directions

- No specialized (non-parametric) CI testing for MLBNs
- Comparison with score-based approaches to causal discovery [1]
- Further investigation of the combinatorial structure of global_{*}(\mathcal{G}, C) [3]
- Interventions and "do"-calculus [4] for MLBNs

Thank you! Questions?

A PC Algorithm for Max-Linear Bayesian Networks

https://arxiv.org/abs/2508.13967

- [1] Mark Adams, Kamillo Ferry, and Ruriko Yoshida. Inference for max-linear Bayesian networks with noise. 2025. arXiv: 2505.00229 [stat.ML]. URL: https://arxiv.org/abs/2505.00229 (cit. on p. 42).
- [2] Carlos Améndola et al. "Conditional independence in max-linear Bayesian networks". In: The Annals of Applied Probability 32.1 (Feb. 2022). Publisher: Institute of Mathematical Statistics, pp. 1–45. ISSN: 1050-5164, 2168-8737. DOI: 10.1214/21-AAP1670. URL: https://projecteuclid.org/journals/annals-of-applied-probability/volume-32/issue-1/Conditional-independence-in-max-linear-Bayesian-networks/10.1214/21-AAP1670.full (visited on 10/08/2024) (cit. on pp. 21, 22, 29, 30).
- [3] Tobias Boege et al. Polyhedral Aspects of Maxoids. arXiv:2504.21068 [math]. Apr. 2025. DOI: 10.48550/arXiv.2504.21068. URL: http://arxiv.org/abs/2504.21068 (visited on 07/14/2025) (cit. on p. 42).
- [4] Judea Pearl. *Causality*. 2nd ed. Cambridge University Press, 2009 (cit. on p. 42).
- [5] Peter Spirtes and Clark Glymour. "An Algorithm for Fast Recovery of Sparse Causal Graphs". en. In: Social Science Computer Review 9.1 (Apr. 1991). Publisher: SAGE Publications Inc, pp. 62–72. ISSN § 0894-4393.

The PCstar algorithm

DOI: 10.1177/089443939100900106. URL: https://doi.org/10.1177/089443939100900106 (visited on 10/07/2024) (cit. on pp. 13, 14).

[6] Thomas Verma and Judea Pearl. "Equivalence and synthesis of causal models". In: *Proceedings of the Sixth Annual Conference on Uncertainty in Artificial Intelligence*. 1990, pp. 255–270 (cit. on pp. 7, 8).