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ABSTRACT

The Gröbner walk is an algorithm for Gröbner basis conversion of ideals in the polynomial ring
I ◁ k[x1, ..., xn]. It exploits the geometric properties of the Gröbner fan, which is a polyhedral fan in
Rn, the maximal cones of which are in one-to-one correspondence with the marked Gröbner bases of
I. In this text, we describe the functionality of the algorithm step by step and provide a formal proof
of correctness. We then survey a series of modifications which have been proposed over the years,
most notably path perturbation and the generic Gröbner walk. Finally we discuss the performance
of the Gröbner walk in a variety of settings and compare it with other Gröbner basis conversion
algorithms in both Macaulay2 and OSCAR.
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GERMAN ABSTRACT

Der Gröbner walk ist ein Algorithmus für den Wechsel von Gröbnerbasen eines polynomiellen Ideals
I ◁ k[x1, ..., xn]. Das Verfahren nutzt die geometrischen Eigenschaften des Gröbnerfächers aus; let-
zterer ist ein polyedrischer Fächer in Rn, dessen Kegel maximaler Dimension in Eins-zu-eins Kor-
rispondenz zu den markierten Gröbnerbasen von I sind. In diesem Text werden die Schritte des
Algorithmus ausführlich beschrieben und es wird einen formalen Beweis seiner Korrektheit geliefert.
Weiterhin beschreiben wir eine Reihe von Veränderungen wie der perturbierte und der generische
walk, die im Laufe der Jahre enstanden sind. Zum Schluss untersuchen wir die Leistung der unter-
schiedlichen Gröbner walks in einer Vielzahl von Kontexten und vergleichen sie mit weiteren Algo-
rithmen zur Gröbnerbasis-Berechnung in Macaulay2 und OSCAR.
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0 Introduction

Gröbner bases play a central role in computational algebra. They solve the ideal membership and
equality problems and are a vital tool for the study and solution of systems of polynomial equations
in several variables. For example, the variety of a zero-dimensional ideal may be computed via a
lexicographic Gröbner basis. Here, the variables in the individual polynomials are isolated in such
a way that the system may be solved via backwards substitution. Because of this, Gröbner basis
computation is sometimes considered a polynomial analogue of Gaussian elimination.

Bruno Buchberger’s original algorithm for Gröbner basis computation remains widely used in
practical applications to this day; however, it is well known that its performance is extremely variable,
depending on both the generating set and the monomial order given as inputs. Unfortunately, the
determination of lexicographic Gröbner bases (and more widely, elimination term orderings) tends to
be considerably more expensive than, for example, the computation of a degree reverse lexicographic
Gröbner basis. Because of this, newer approaches often adopt a two-stage strategy in which a Gröbner
basis w.r.t a “cheap” order is computed first, and subsequently converted to a Gröbner basis of the
desired order.

The Gröbner walk is an example of such a conversion algorithm; given a reduced Gröbner basis
of an ideal I ◁Q[x1, ..., xn] w.r.t some starting monomial order ≺, it computes the reduced Gröbner
basis of I w.r.t desired target order ≺′ via a series of intermediate steps. This is done by exploiting
the geometry of the Gröbner fan, which is a polyhedral fan in Rn, the maximal cones of which are
in one-to-one correspondence with the marked Gröbner bases of I. We call these maximal cones
Gröbner cones.

The intermediate computations are determined by tracing a line segment between the Gröbner
cones corresponding to ≺ and ≺′; each time the line segment enters a new cone at a point ω, a Gröbner
basis the corresponding monomial order is computed by first computing a Gröbner basis of the ideal
of initial forms inω(I) with Buchberger’s algorithm and subsequently “lifting” this basis to a Gröbner
basis of I. A feature of these intermediate computations is that they occur on truncated polynomials
which generally have fewer terms than the Gröbner basis elements of I. Hence, the Gröbner walk’s
strategy may be described as replacing one “heavy” computation (the direct computation of a Gröbner
basis of I with respect to ≺′) by many “light” instances (the computation of the starting Gröbner
basis and the intermediate conversions).

Over the years, different strategies for the actual execution of the walk have been proposed. For
example, [CKM97] originally suggested to perturb the starting and target vectors by some “small”
quantity (in such a way as to remain in their respective cones) in order to guarantee that the line
segment intersects boundaries of cones only at facets. This is a desirable outcome since the number
of terms of the initial forms inω(g) is minimal when ω lies on a facet of a Gröbner cone.

Unfortunately this method of deterministic path perturbation is ill-advised in practice, as it leads to
intermediate vectors with long coefficients, resulting in heavy computations and issues with accuracy.
However, path perturbation formed the theoretical basis for the generic Gröbner walk [Fuk+07]. Here,
a symbolic perturbation on the start and target vectors is carried out instead, and all intermediate
sets of the form inω(G) are computed via the outer normal vector of the facet on which ω lies. The
vector ω itself remains unknown throughout, thus avoiding the aforementioned numerical issues.

This text has two main aims; the first is to constitute a comprehensive resource for the theory
behind the original algorithm and its subsequently introduced variants. This includes formal proofs
of correctness which have been as of yet absent in the literature. The second aim is to implement
the algorithm in OSCAR and to perform tests and comparisons: both of the Gröbner walk and other
Gröbner basis computation algorithms, and of the OSCAR implementation compared to the already
present Macaulay2 implementation.
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In Section 1 we recall some definitions and prove preliminary results concerning monomial orders,
weight vectors and Gröbner cones. In Section 2 we formalize the algorithm and prove its correctness.
Section 3 contains several step-by-step executions of the algorithm on a small example which empha-
sizes the importance of the choice of path. Section 4 and Section 5 are discussions of the perturbed and
generic variants of the algorithm respectively. Section 6 investigates the performance of the Gröbner
walk in a variety of settings in Macaulay2. Section 7 presents our implementation of the Gröbner
walk in OSCAR and discusses some preliminary benchmark results.
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5.1 The facet preorder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2 The generic lifting step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
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1 Preliminaries

Throughout this text we will adopt the following notation. Definitions and elementary results con-
cerning ideals, monomial orders and Gröbner bases can be found in Appendix A.

Notation.

• For an arbitrary field K, we denote the polynomial ring in n variables over K by K[x1, ..., xn].

• We denote ideals in K[x1, ..., xn] by I and write I ◁K[x1, .., xn]. For a subsetM ⊆ K[x1, ..., xn],
we denote the ideal generated by M by ⟨M⟩.

• We denote the set of all monomials in x1, ..., xn by Monn(x). We adopt the convention of writing
monomials as xα = xα1

1 · x
α2
2 · ... · xαn

n , where α = (α1, ..., αn) ∈ Nn.

• We we call admissible total orders on the set Monn(x) which are also well-orderings monomial
orders (Definition A.5). We denote them by the symbol “≺” and variants thereof. The symbol
“<” is reserved for ordering relations on vector spaces.

• Given a monomial order ≺ and a non-zero polynomial f ∈ K[x1, ..., xn], we denote the leading
term of f with respect to ≺ by LT≺(f) and its leading monomial by in≺(f) (cf. Definition A.9).

• The initial ideal of an ideal I with respect to ≺ is denoted by in≺(I) (cf. Definition A.11).

• We denote the marked Gröbner basis of I w.r.t ≺ by G≺. This is the monic reduced Gröbner
basis of I with the leading terms identified (cf. Definition A.16).

Unless otherwise specified, we always assume that the underlying field is Q.

1.1 Weight vectors and initial forms

Let Qn≥0 :=
{
ω = (ω1, ..., ωn) ∈ Qn , ωi ≥ 0 for all i ∈ {1, ..., n}

}
denote the non-negative orthant of

Qn. We refer to vectors ω ∈ Qn≥0 as weight vectors.

Definition 1.1. Let ω ∈ Qn≥0 be a weight vector.

• Given a polynomial f =
∑
cαx

α ∈ Q[x1, ..., xn], the support of f is the set of exponent vectors
of its terms:

supp(f) :=
{
α ∈ Nn : cα ̸= 0

}
⊂ Nn

• the ω-degree of a monomial xα is

degw(x
α) :=

n∑
i=1

wiαi = ⟨ω, α⟩ ∈ Q≥0.

• the ω-degree of a non-zero polynomial f ∈ Q[x1, ..., xn] is the maximal ω−degree of its terms:

degω(f) := max
α∈supp(f)

{
⟨ω, α⟩

}
• For a non-zero polynomial f ∈ Q[x1, ...xn] the initial form of f w.r.t ω is the sum of all terms
of f of maximal ω-degree:

inω(f) :=
∑
α∈S′

f

cαx
α where S′

f := {α ∈ supp(f) : ⟨ω, α⟩ = degω(f)}.

9



• the ω-tail of a non-zero polynomial f is the polynomial f − inω(f). We denote it by tailω(f).

• Given an ideal I ◁Q[x1, ..., xn] the ideal of initial forms of I with respect to ω is

inω(I) = ⟨{inω(f) , f ∈ I}⟩

• For a set of polynomials F ⊂ Q[x1, ..., xn] we define the set of its initial forms

inω(F ) := {inω(f) | f ∈ F}.

While in≺(I) is a monomial ideal for any monomial order ≺, the ideal of initial forms inω(I)
generally is not:

Example 1.2. Let I = ⟨x + y3, x2 + xy⟩ ◁ Q[x, y], ≺ be the lexicographic order with x ≻ y and
ω = (3, 1). Then

in≺(I) = ⟨x, x2⟩ = ⟨x⟩ and inω(I) = ⟨x+ y3, x2⟩ .

The latter is not to be confused with the set of initial forms

inω({x+ y3, x2 + xy}) = {x+ y3, x2}

which is not an ideal.

Remark 1.3. Let f, g ∈ Q[x1, ..., xn] be non-zero polynomials ω ∈ Qnn≥0. The following observations
follow from the notions in Definition 1.1:

(i) degω(f) = degω(inω(f))

(ii) degω(fg) = degω(f) + degω(g)

(iii) degω(f + g) ≤ max{degω(f),degω(g)}

(iv) For ω = (1, ..., 1) = 1

degω(f) = deg1(f) = max
α∈supp(f)

{ n∑
i=1

αi

}
is what is commonly known as the total degree of f .

The definitions and results which follow describe the interplay between weight vectors and mono-
mial orders. They are taken from [Stu95, Chapter 1] and [CKM97]. In particular, our Proposition 1.9
is a slightly stronger version of [Stu95, Corollary 1.9].

Definition 1.4. We say that monomial order ≺ refines a weight vector ω ∈ Qn≥0 if the following
holds:

⟨ω, β⟩ < ⟨ω, α⟩ =⇒ xβ ≺ xα for all α, β ∈ Nn. (1)

Given a monomial order ≺ and a weight vector ω, a new monomial order may be defined as
follows:

Definition 1.5. Given a monomial order ≺ and weight vector ω ∈ Qn≥0, the refinement of ω w.r.t
≺ is the relation on Monn(x) defined by

xβ ≺ω xα if and only if ⟨ω, β⟩ < ⟨ω, α⟩ or
(
⟨ω, β⟩ = ⟨ω, α⟩ and xβ ≺ xα

)
. (2)

Expressed in words, ≺ω compares the ω-degrees of two monomials and breaks ties with ≺. The
proof that ≺ω is indeed a monomial order can be found in the appendix (cf. proposition A.8).

10



Remark 1.6. For any monomial order ≺ and weight vector ω ∈ Qn≥0, the monomial order ≺ω refines
ω.

Lemma 1.7. Let ω ∈ Qn≥0 be a weight vector and ≺ be a monomial order. Then:

≺ refines ω ⇐⇒ in≺(inω(f)) = in≺(f) for all f ∈ Q[x1, ..., xn], f ̸= 0. (3)

Proof. We prove “ =⇒ ” by contraposition; assuming that there exists a non-zero polynomial f such
that in≺(f) = xβ and in≺(inω(f)) = xα for some β, α ∈ supp(f) with β ̸= α then in particular
β /∈ supp(inω(f)) otherwise the monomials would coincide. This implies ⟨ω, β⟩ < ⟨ω, α⟩. However,
in≺(f) = xβ implies xα ≺ xβ . Thus, α and β do not fulfill the condition (1), so ≺ does not refine ω.

“ ⇐= ”: If in≺(inω(f)) = in≺(f) holds for all f ̸= 0, then it holds in particular for binomials of
the form xα+xβ . Assuming ⟨ω, α⟩ < ⟨ω, β⟩, then in≺(xα+xβ) = in≺(inω(x

α+xβ)) = in≺(x
β) = xβ .

This implies xα ≺ xβ , so (by Definition 1.4) ω refines ≺.

Proposition 1.8. Let I be an ideal, ≺ a monomial order, and ω ∈ Qn≥0 a weight vector. Then

in≺ω
(I) = in≺(inω(I)). (4)

Proof. “⊆”: The key observation here is that for any non-zero f ∈ Q[x1, .., xn]:

in≺ω (f) = in≺(inω(f)). (5)

This is due to the definition of ≺ω: the leading monomial of a polynomial w.r.t ≺ω is the unique
monomial of inω(f) which is maximal with respect to ≺. The inclusion follows immediately.
“⊇”: As both sets in (4) are monomial ideals, it suffices to show that an arbitrary monomial in
in≺(inω(I)) lies in in≺ω

(I). (This is a consequence of Lemma A.3.) Let xα ∈ in≺(inω(I)). Then
there exists a g ∈ inω(I) such that in≺(g) = xα. It follows from the multivariate division algorithm
(more specifically, applying Proposition A.12 to g, I and ≺ω) that the following statement holds:

There exists an f ∈ I such that f = g + h and degω(h) < degω(g).

Consequently, in≺ω (f) = in≺ω (g + h) = in≺ω (g) = in≺(inω(g)) = xα, proving xα ∈ in≺ω (I).

This result has two important consequences.

Proposition 1.9. Let I be an ideal, ≺ be a monomial order, and ω be a weight vector. Let G≺ω
be

the marked Gröbner basis of I w.r.t ≺ω. Then the set

inω(G≺ω
) = {inω(g) | g ∈ G≺ω

}

is the marked Gröbner basis of inω(I) w.r.t ≺, where the markings of inω(G≺) are taken to be
those of G≺ω

.

Proof. For readability we set G′ := inω(G≺ω ). We first show that G′ is a Gröbner basis of inω(I) by
showing in≺(G

′) = in≺(inω(I)).

“⊆” follows directly from G′ ⊆ inω(I).

“⊇”: let xα ∈ in≺(inω(I)). Then xα ∈ in≺ω
(I) by (5). As G≺ω

is a Gröbner basis of I with
respect to ≺ω we have that

xα ∈ in≺ω
(G≺ω

) = in≺(inω(G≺ω
)) = in≺(G

′) (6)

as desired.
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To show that G′ is reduced, we must prove that no term of inω(g) is divisible by any of the
leading terms of the initial monomials inω(g̃) ∈ G′ \ {inω(g)}. Assuming this is not the case, we have
that for some inω(g) ∈ G′ and α ∈ supp(inω(g)), the monomial xα lies in in≺(G

′ \ {inω(g)}). Then
Lemma A.3 implies that there is some inω(g̃) ∈ G′ \ {inω(g)} such that in≺(inω(g̃)) divides x

α. But
now since α ∈ supp(g) and in≺(inω(g̃))) is a monomial appearing in g̃ ∈ G≺ω \ {g}, this would imply
that G≺ω is not reduced.
Furthermore, the polynomials in G′ are monic. This is a consequence of the observation (5) from the
previous proof; we have that

LT≺(inω(gi)) = LT≺ω(gi) = in≺ω
(gi) for all inω(gi) ∈ G′, (7)

where the second equality holds because G≺ω is reduced (and particularly monic). This proves that
the set (6) is the reduced Gröbner basis of inω(I) with respect to ≺. Finally, (7) implies that the
markings of this basis are precisely those of the original basis G≺ω

. This concludes the proof.

Corollary 1.10. If ω ∈ Qn≥0 is such that inω(I) is a monomial ideal, then

inω(I) = in≺ω (I)

for any monomial order ≺.

Proof. We first show “⊆” : Let inω(I) = ⟨{xα1 , ...xαt}⟩ for some α1, ..., αt ∈ Nn. Then for all i,
xαi = in≺(x

αi) ∈ in≺(inω(I)) = in≺ω (I). This proves “⊆”.

“⊇” follows from Proposition 1.8: if xα ∈ in≺ω
(I) = in≺(inω(I)), then there exists an f ∈ inω(I)

such that in≺(f) = xα. Due to the assumption that inω(I) is a monomial ideal, each term of f lies
in inω(I). Thus, xα ∈ inω(I). This proves “⊇” (Once again, it suffices to show the inclusions for
monomials, as both sets are monomial ideals).

Upon fixing an ideal I ◁Q[x1, .., xn] we can introduce the notion of a weight vector ω representing
a monomial order ≺.

Definition 1.11. Let I ◁ Q[x1, ..., xn] and ≺ be a monomial order. We say that a weight vector
ω ∈ Qn≥0 represents ≺ for I if

in≺(I) = inω(I).

If the ideal I being referred to is clear from context, we may simply say that ω represents ≺.

While the notion of refinement is not dependent on any particular ideal I, the notion of represen-
tation clearly is.

Example 1.12. Consider Q[x, y] with the monomial order ≺ defined to be the graded lexicographic
ordering glexx≻y. Then the vector ω = (1, 1) refines ≺, seeing as ≺ first compares total degree and
subsequently breaks ties with lex. It also represents the ideal I = ⟨x2+y⟩, as inω(I) = ⟨x2⟩ = in≺(I).
However, it does not represent the ideal J = ⟨x+ y⟩ as inω(J) = ⟨x+ y⟩ ≠ ⟨x⟩ = in≺(J).

1.2 Gröbner cones

The statement of Corollary 1.10 may be rephrased as follows: given an ideal I and a sufficiently generic
weight vector ω, then there exists a monomial order ≺ such that ω represents ≺. The following result
from [Stu95] states that conversely, given an ideal I and a monomial order ≺, we can find a weight
vector ω ∈ Qn≥0 such that ω represents ≺ with respect to I.

Theorem 1.13. Let G≺ = {g1, ..., gs} be the reduced Gröbner basis of an ideal I with respect to a
monomial order ≺. Then any vector ω in the set

{ω ∈ Rn≥0 : inω(gi) = in≺(gi) for i = 1, ...s} (8)

represents ≺.

12



Proof. Consult [Stu95, Theorem 1.11 (pg. 4)].

The proof of this theorem states even more; the vectors which represent I w.r.t ≺ lie in the
interior of a full-dimensional polyhedral cone (cf. Definition C.2). We call such full-dimensional
cones Gröbner cones.

Definition 1.14.

• The topological closure of the set described in (8) is called the Gröbner cone of I w.r.t ≺. It
is an n-dimensional polyhedral cone with non-empty interior. When the ideal I is clear from
context, we denote it by C≺.

C≺ = {ω ∈ Rn : inω(gi) = in≺(gi) for i = 1, ...s} (9)

• The polyhedral complex (cf. definition C.11) which has Gröbner cones as full-dimensional faces
and lower-dimensional faces defined by their incidences is called the Gröbner fan of I. We
denote it by GFan(I).

• The Gröbner region of I is

GR(I) = {ω′ ∈ Rn: inω(I) = inω′(I) for some ω ∈ Rn≥0}

It is the region covered by the Gröbner fan, and contains the entire non-negative orthant Qn≥0.

For more details (such as proof of the fact that the Gröbner fan is indeed a fan) we refer to [MR88]
and [Stu95]. There is one subtlety to be noted: in the aformentioned papers , Gröbner cones/fans
are defined as sets in Rn, and this is necessary for them to be considered as polyhedral objects in the
proper sense. The notions of initial forms/weight vectors from the previous section may be defined
on Rn without restriction; however, as we are ultimately interested in matters of implementation,
we chose to define these notions directly over the rational numbers. We shall continue with this
convention, keeping in mind that we may at times naturally identify a Gröbner cone C≺ with its set
of rational points C≺ ∩Qn.

Example 1.15. Let I = ⟨x+ y3, x2+xy⟩ be the ideal from Example 1.2. The marked Gröbner basis
of I w.r.t ≺, where ≺ is the lexicographic ordering lexx≻y is

G≺ = {y6 − y4, x+ y3}.

The corresponding Gröbner cone is topological closure of the set of all vectors ω ∈ R2 such that
⟨ω, (0, 6)⟩ > ⟨ω, (0, 4)⟩ and ⟨ω, (1, 0)⟩ > ⟨ω, (0, 3)⟩. This is the 2-dimensional cone with rays (1, 0) and
(3, 1).

C≺

ω2

ω1

Figure 1: The Gröbner cone of I with respect to the lexicographic ordering. By Theorem 1.13, any
vector in the interior of C≺ represents ≺ for I.
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In the remainder of this chapter we present results from the original paper on the Gröbner walk
[CKM97] with more detailed proofs and notation consistent with our own.

Corollary 1.16. ([CKM97, Lemma 2.1])
Let I be an ideal, ω ∈ Qn≥0 a weight vector, ≺ a monomial order and G≺ = {g1, ..., gs} be the

reduced Gröbner basis of I w.r.t ≺. Then the following holds:

ω represents ≺ ⇐⇒ inω(g) = in≺(g) for all g ∈ G≺. (10)

Proof. “⇐= ” is a reformulation of the statement of Theorem 1.13.
“ =⇒ ”: If inω(I) = in≺(I) holds, then in particular inω(I) is a monomial ideal. By Proposition 1.9

in≺ω
(I) = inω(I) = in≺(I)

Thus, the 1-1 correspondence between initial ideals and marked Gröbner bases (cf. Proposi-
tion A.17) implies G≺ω

= G≺. In particular we have equality of the leading terms, therefore

in≺ω
(g) = in≺(inω(g)) = in≺(g) for all g ∈ G≺. (11)

By Proposition 1.8 we know that {inω(gi), i ∈ {1, .., s}} is the reduced Gröbner basis of inω(I)
w.r.t ≺. Under our assumption that inω(I) is a monomial ideal, each inω(gi) must be a monomial
(Clearly, reduced Gröbner bases of monomial ideals consist solely of monomials). Thus, (11) can only
hold if inω(gi) = in≺(gi) holds for all i. This concludes the proof.

Corollary 1.17. ([CKM97, Lemma 2.2])
For two monomial orders ≺1, ≺2 we have:

C≺1 = C≺2 ⇐⇒ in≺1(g) = in≺2(g) for all g ∈ G≺1 (12)

or equivalently:

C≺1 = C≺2 ⇐⇒ G≺1 = G≺2 , (13)

where the right hand side of (13) is an equality of marked Gröbner bases. That is, we require both
the set equality G≺1 = {g1, ..., gs} = G≺2 and the equality of markings, i.e. that
in≺1

(gi) = in≺2
(gi) holds for all i ∈ {1, ..., s}.

Proof. “ =⇒ ” follows immediately from the results above by taking a weight vector ω that represents
both monomial orders.
“⇐= ” Let ω ∈ Qn≥0 be a weight vector representing ≺1. By assumption and Corollary 1.16, ω also
represents ≺2. A consequence of the proof of Theorem 1.13 is that ω ∈ int(C≺1) ∩ int(C≺2). As C≺1

and C≺2
are cones in a polyhedral fan (and any two distinct cones in a polyhedral fan intersect at

the boundary), C≺1
= C≺2

must hold.

It may not be immediately clear that the set described in (9) corresponds to a polyhedral cone.
In order to clarify this, as well as to simplify the description of computations in later chapters, we
introduce the following notion

Definition 1.18. Let G≺ = {g1, ..., gs} be the marked Gröbner basis of I w.r.t ≺.
For each i ∈ {1, .., s} we write

LT≺(gi) = in≺(gi) = xαi and S′
gi = supp(gi) \ {αi}.

We call set of all vectors

BV(G≺) :=

{
αi − β for i ∈ {1, ...s} , β ∈ S′

gi

}
⊂ Zn

the bounding vectors of G≺ (or equivalently, C≺).
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Example 1.19. For the marked Gröbner basis G≺ = {y6− y4, x2 + y3} Example 1.15, the bounding
vectors of G≺ are

BV(G≺) =

{(
0
2

)
,

(
1
−3

)}
.

It is no coincidence that these vectors form an H-description of C≺.

Using this definition, the condition for inclusion in a Gröbner cone obtained from the proof of
Theorem 1.13 may be reformulated as follows:

Proposition 1.20. Let x ∈ Qn≥0, C≺ be a Gröbner cone of an ideal I w.r.t the monomial order ≺
and BV(G≺) := {v1, ..., vm} be the corresponding bounding vectors. Then

x ∈ C≺ ⇐⇒ ⟨x, vj⟩ ≥ 0 for all j ∈ {1, ...,m}. (14)

Furthermore:
x ∈ ∂C≺ ⇐⇒ equality holds for at least one j.

Proof. This follows from the proof of Theorem 1.13 (Cf. [Stu95, pg. 4]).

Consequently, the vectors in BV(G≺) give an H-description (cf. Theorem C.4) of the cone C≺.
Moreover, there is following relationship between refinement and inclusion in a Gröbner cone:

Lemma 1.21. Let ω ∈ Qn≥0 and ≺ be a monomial order. Then:

≺ refines ω =⇒ ω ∈ C≺.

Proof. Let ≺ be a refinement of ω , g ∈ G≺ and xα = in≺(g). From Lemma 1.7 we know that
in≺(inω(g)) = in≺(g), therefore α ∈ supp(inω(g)). In particular ⟨ω, α⟩ ≥ ⟨ω, β⟩ for all β ∈ supp(g)
which proves ω ∈ C≺ by Proposition 1.20.

The converse does not hold in general. Consider the following example:

Example 1.22. Let I = ⟨x + y⟩ ◁ Q[x, y]. The Gröbner cone of I w.r.t the lexicographic ordering
lexx≻y is

Clex = {ω ∈ Q2
≥0 : ω1 ≥ ω2}.

In particular, we have that (1, 1) ∈ Clex. However lex is not a refinement of the vector (1, 1).
For example, for f = x2 + xy2 we have that

xy2 = in≺(inω(f)) ̸= in≺(f) = x2.

A modified version of the converse does hold:

Lemma 1.23. Let ω ∈ Qn≥0, ≺ be a monomial order, and C≺ be a Gröbner cone of some ideal I
w.r.t ≺. Then:

ω ∈ C≺ ⇐⇒ C≺ = C≺ω
.

Proof. “ ⇐= ” If C≺ = C≺ω
, then ω ∈ C≺ follows directly from Lemma 1.21 and the observation

that ≺ω refines ω.
For “ =⇒ ” assume ω ∈ C≺. We show C≺ = C≺ω by showing

in≺ω
(g) = in≺(g) for all g ∈ G≺ ,

which implies this direction by Corollary 1.17.
Let in≺ω (g) = xα. Then ⟨ω, α⟩ ≥ ⟨ω, β⟩ for all other β ∈ supp(g). If we assume in≺(g) ̸= xα then
in≺(g) = xβ for some β with ⟨ω, β⟩ < ⟨ω, α⟩. However, this would imply ⟨ω, β−α⟩ < 0 and therefore
ω /∈ C≺ (by Proposition 1.20 as (β − α) ∈ BV(G≺)). This is a contradiction. Hence, C≺ = C≺ω

holds.
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Combining this result with Lemma 1.21 yields the following equivalent condition:

Corollary 1.24. ( [CKM97, Remark 2.3])
Let I be an ideal, G≺ and C≺ be the Gröbner basis/cone of I w.r.t some monomial order ≺. For

ω ∈ Qn≥0 the following holds:

ω ∈ C≺ ⇐⇒ in≺(g) = in≺ω
(g) = in≺(inω(g)) for all g ∈ G≺. (15)

The Gröbner walk follows line segments which transverse cones in the Gröbner fan. For this
reason, it is useful to describe what happens at points at which a line segment crosses into a new
cone. This is done by the following result.

Proposition 1.25. ([CKM97, Proposition 2.4])
Let I be an ideal, σ, τ ∈ Qn≥0 be weight vectors, and ≺ a monomial order such that ≺ refines τ .

Then there exists a ω ∈ στ , ω ̸= σ such that

σω ⊂ C≺σ .

Proof. The fact that σ ∈ C≺σ
holds is a consequence of Corollary 1.24.

Let G≺σ
= {g1, ..., gr} be the (marked) reduced Gröbner basis of I w.r.t ≺σ. We fix an i ∈ {1, ..., r}

and write in≺σ
(gi) = xαi . Recall that the σ−tail of a polynomial f is tailσ(f) := f − inσ(f) (cf.

Definition 1.1).
As the monomial order ≺σ starts by comparing σ−degrees, we have that

⟨σ, αi − β⟩ > 0 for all β ∈ supp(tailσ(gi)).

Furthermore by continuity, there exists a point ωi ∈ στ , ωi ̸= σ such that

⟨ψ, αi − β⟩ > 0 for all β ∈ supp(tailσ(gi)) , ψ ∈ σωi. (16)

The proposition follows from the following claim.

Claim: ⟨ψ, αi − β⟩ ≥ 0 for all ψ ∈ σωi for all β ∈ supp(gi).

Proof of claim: Fix an arbitrary ψ ∈ σωi and β ∈ supp(gi). For β, one of the following two cases
holds:
If β ∈ supp(tailσ(gi)) then the claim is precisely (16).
If β ∈ supp(inσ(gi)), then ⟨σ, αi − β⟩ = 0. Futhermore, due to the assumption that≺ refines τ , we
have that ⟨τ, αi − β⟩ ≥ 0. Evidently ψ ∈ σωi ⊂ στ , therefore (upon rewriting ψ = (1 − t)σ + tτ for
some t ∈ (0, 1] ) we see that

⟨ψ, αi − β⟩ = ⟨(1− t)σ + tτ, αi − β⟩ = (1− t) ⟨σ, αi − β⟩︸ ︷︷ ︸
=0

+t ⟨τ, αi − β⟩︸ ︷︷ ︸
≥0

≥ 0.

This proves the claim.
A consequence of the claim is that αi ∈ supp(inψ(gi)), therefore in≺σ

(inψ(gi)) = xαi = in≺σ
(gi).

Finally, for each i ∈ {1, ..., r} we write ωi as ωi = (1− ti)σ + tiτ , where ωi is a point on στ fulfilling
(16). We subsequently set ω := (1− t̂)σ + t̂τ , where t̂ := min{t1, ..., tr} Then for all ψ ∈ σω and all
i ∈ {1, ..., r} we have that in≺σ

(inψ(gi)) = xαi = in≺σ
(gi). This implies ω ∈ C≺σ

by Corollary 1.24,
which completes the proof.

Example 1.26. To illustrate the statement of Proposition 1.25, we consider once again the ideal
I = ⟨x + y3, x2 + xy⟩, for which we have already computed the marked Gröbner basis w.r.t lexx≻y
in Example 1.15. This Gröbner basis corresponds to the cone with rays (1, 0) and (3, 1). We call
this cone C1. After computing the reduced Gröbner bases w.r.t grevlex and lexy≻x (by applying
Buchberger’s algorithm and subsequently reducing), we end up with the marked Gröbner bases
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Ggrevlex = {y3 + x, x2 + xy} Glexy≻x
= {x4 − x2, xy + x2, y3 + x}

with corresponding Gröbner cones

C2 := Cgrevlex := cone({(3, 1), (1, 1)}) C3 := cone({(1, 1), (1, 0)}),

computed via the H-description given by bounding vectors.
Taken together, these three cones cover Q2

≥0. Thus, they are the maximal cones of the Gröbner fan
of I. In particular, the Gröbner cone of I w.r.t any other monomial order ≺ is one of these three
cones. Now consider the two weight vectors σ = (2, 1) and τ = (0, 1). lexy≻x refines τ and indeed, it
can be verified (via a Gröbner basis computation) that the Gröbner cone of I w.r.t (lexy≻x)σ is C2.
Proposition 1.25 states that there exists a ω ∈ C2 such that σω ⊂ C2. The ω closest to τ such that
this is the case is ω = (1, 1).

C1

C2

C3

τ ω σ

Figure 2: The three cones C1, C2, C3 are the maximal cones of the Gröbner fan of I. By Proposi-
tion 1.25, there exists a ω such that σω ⊂ C2.

1.3 Monomial orders and matrices

In computer algebra systems, monomial orders are encoded as matrices. In the last section of this
chapter we state some facts about this correspondence which will be needed to describe the Gröbner
walk. More information may be found in Appendix B.
Let k, n ∈ N, k ≥ n, and A ∈ Qk,n be a matrix . We consider the relation <A on Qn defined as
follows:

For u, v,∈ Qn : u <A v ⇐⇒ Au <lex Av,

where lex denotes the lexicographic order on Qk (cf. Definition B.1). In words, <A compares the
entries of the vectors Au,Av ∈ Qk until a tie is broken. If rk(A) = n, then it can easily be checked
that <A is a strict total order on Qn (cf. Lemma B.4). The relation between matrix orders and
monomial orders is described by the following two propositions.

Proposition 1.27. Let k ≥ n and A ∈ Qk,n be a matrix of rank n such that its first row a1 ∈ Qn
is not the zero vector and has non-negative entries. The relation ≺A on the set of all monomials of
Q[x1, ..., xn] defined by

xβ ≺A xα :⇐⇒ β <A α for all α, β ∈ Nn (17)

is a monomial order.
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Proof. Consult Proposition B.5. The restrictions on a1 are required so that ≺A is a well-ordering.

Remark 1.28. In some literature, monomial orders are defined directly as total admissible well-
orderings on the set of exponent vectors Nn. The corresponding relation on the set of monomials
Monn(x) is induced via the one-to-one correspondence between Monn(x) and Nn. If one adopts this
convention monomial order ≺A is precisely the restriction of <A onto Nn.

Every matrix fulfilling the conditions of proposition 1.27 induces a monomial order. Conversely,
any monomial order ≺ may be represented (in the sense of (17)) by such a matrix.

Proposition 1.29. For any monomial order ≺, there exists a matrix A ∈ Qk,n of rank n, k ≥ n and
first row a1 ∈ Qn≥0 such that for all α, β ∈ Nn:

xβ ≺ xα ⇐⇒ xβ ≺A xα ⇐⇒ β <A α. (18)

Proof. Consult [Ovc02, pg.239] or [Rob85, pg.4].

Definition 1.30. For a monomial order ≺, we call a matrix A ∈ Qk,n fulfilling the conditions of
Proposition 1.29 a monomial order matrix of ≺. We conventionally denote it by A≺.

Remark 1.31. The version of proposition 1.29 stated in [Ovc02] is slightly stronger. It states that, for
any monomial order ≺, there exists an invertible matrix A≺ with non-negative entries such that (18)
holds. Because of this, we will assume at times that A≺ has these additional properties. In matters
of implementation one must proceed with caution, as monomial orders are not represented by such
matrices by default.

Remark 1.32. The correspondence between monomial orders and matrices is not one-to-one. As an
example, consider the lexicographic ordering on 3 variables. An obvious choice for a monomial order
matrix would be the identity matrix I3. However, the matrices

2 0 0
0 1 0
0 0 1

 ,


1 0 0
0 1 0
0 0 1
1 1 1

 ,

2 0 0
0 0 −1
0 −1 0

 ,

are all alternative choices for monomial order matrices for this ordering.

We conclude with two more results about monomial order matrices which will be required in
Section 2.

Proposition 1.33. Let ≺ be a monomial order on Q[x1, ..., xn] and A ∈ Qk,n be a monomial order
matrix of ≺. Let a1 ∈ Qn≥0 denote the first row of A. Then ≺ refines a1 in the sense of definition 1.4.
That is:

⟨a1, β⟩ < ⟨a1, α⟩ =⇒ xβ ≺ xα for all α, β ∈ Nn.

In particular, a1 ∈ C≺ holds for any ideal I ◁Q[x1, ..., xn].

Proof. a1 ∈ Qn≥0 holds by construction. The implication above follows immediately from the definition
of monomial order matrix. a1 ∈ C≺ follows from Lemma 1.21.

Corollary 1.34. Let ≺ be a monomial order with monomial order matrix A≺, and ω ∈ Qn≥0 be a
weight vector. A monomial order matrix for the refinement ≺ω is given by the matrix

A≺ω
=

(
ω
A

)
∈ Qk+1,n.

Proof. This also follows directly from the definitions of A≺ and ≺ω. The monomial order ≺ω first
compares ω−degrees and then breaks ties with ≺.
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Example 1.35. A commonly encountered monomial order is the graded lexicographic order glex. It
may be seen as the lexicographic ordering refined by the vector ω = 1 = (1, ..., 1). A matrix for the
lexicographic order is given by the identity matrix. Thus, a monomial order matrix for glex is given
by

(
1
In

)
=



1 1 · · · 1
1 0 · · · 0

0 1
. . .

...
...

. . .
. . . 0

0 · · · 0 1

 ∈ Qn+1,n.

.

We now have all the tools necessary to describe the Gröbner walk as it was described in [CKM97].

19



2 The algorithm

The Gröbner walk is a Gröbner basis conversion algorithm. Its goal is to complete the following task:

Given an ideal I and the reduced Gröbner basis of I w.r.t ≺,
compute the reduced Gröbner basis of I w.r.t some other monomial order ≺′

Throughout this text we will refer to ≺ and ≺′ as the starting and target monomial orders
respectively. In accordance with Proposition 1.29, they may be represented by matrices A≺ and
A≺′ ∈ Qk,n with k ≥ n and full row rank. The algorithm requires a starting vector σ ∈ C≺ as well
as a target vector τ ∈ C≺′ . By Proposition 1.33, σ and τ can be taken to be the first rows A≺ and
A≺′ respectively. Abstractly, the algorithm can be described through the following steps:

• Starting at σ, proceed on the line segment στ until reaching a point ω ∈ ∂C≺ on the boundary
of the starting cone.

• Convert the set of initial forms inω(G≺) to a Gröbner basis M of inω(I) with respect to ≺′
ω.

• “Lift” M to a Gröbner basis G of I w.r.t ≺′
ω.

• Reduce G to the marked Gröbner basis G≺′
ω
.

• If τ ∈ C≺′
ω
, return G≺′

ω
. Otherwise set σ := ω, A≺ := A≺′

ω
and repeat the steps above.

The goal for this chapter is to formalize these steps and prove the correctness of the algorithm.

2.1 The standard Gröbner walk

A formal algorithm for the procedure described above is as follows:

Algorithm 1 StandardGroebnerWalk(G≺, A≺, A≺′)

Input: G≺ ▷ the marked Gröbner basis of I w.r.t ≺
A≺ and A≺′ ▷ monomial order matrices for ≺ and≺′

Output: G≺′ ▷ the marked Gröbner basis of I w.r.t ≺′

σ ← (A≺)1,· ▷ A weight vector refined by ≺
τ ← (A≺′)1,· ▷ A weight vector refined by ≺′

done ← “False”
while done = “False” do

ω ← GetNextW(G≺, σ, τ) ▷ the weight vector at which στ exits C≺
G′ ← Lift(G≺, ω, τ) ▷ outputs a Gröbner basis of I w.r.t ≺′

ω

G′ ← Reduce(G′) ▷ interreduction

if ω = τ then
done ← “True” ▷ if we have reached τ , terminate outputting G′

else ▷ otherwise, update the starting Gröbner basis/order to ≺′
ω

σ ← ω
G≺ ← G′

A≺ ← A≺′
ω

▷ the new starting monomial order is ≺′
ω

end if
end while
return G′
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The correctness/ termination of StandardGroebnerWalk depends on the correctness/termi-
nation of the GetNextW and Lift subroutines. We therefore start by describing these.

2.2 Computing the next weight vector

We fix an ideal I and a monomial order ≺. Let BV(G≺) = {v1, ..., vm} denote the bounding vectors
of G≺ .

Lemma 2.1. Let I be an ideal, ≺ be a monomial order, C≺ be the Gröbner cone of I w.r.t ≺ , and
σ, τ ∈ Qn≥0 be weight vectors. We assume σ ∈ C≺ and τ /∈ C≺. The point ω ∈ ∂C≺ ∩ στ at which the
line segment στ exits C≺ is a weight vector, and may be written as ω = (1− û)σ + ûτ , where

û := max

{
u ∈ [0, 1] : (1− u)⟨σ, vi⟩+ u⟨τ, vi⟩ ≥ 0 for all i ∈ {1, ...,m}

}
. (19)

Proof. The first observation follows from Proposition 1.20; upon writing a point x ∈ στ as
x = (1− u)σ + uτ for some u ∈ [0, 1), the condition (14) for inclusion in a Gröbner cone states that

x ∈ C≺ ⇐⇒ (1− u)⟨σ, vi⟩+ u⟨τ, vi⟩ ≥ 0 for all i ∈ {1, ...,m}.

Clearly, the point furthest along στ such that the condition on the right hand side holds is
(1− û)σ + ûτ . Finally, the point ω := (1− û)σ + ûτ is a weight vector as it is a linear combination
of weight vectors with non-negative rational coefficients.

The following result characterizes û. It was first mentioned without proof in [CLO05, pg.437].

Proposition 2.2. Let I, ≺, G≺, τ and σ be such as in the setting of Lemma 2.1. We define the set

M := {vi ∈ BV(G≺) | ⟨τ, vi⟩ < 0} . (20)

Then the quantity û defined in (19) is

û = min
vi∈M

{
⟨σ, vi⟩

⟨σ, vi⟩ − ⟨τ, vi⟩

}
. (21)

Proof. Let M := {v1, ..., vk} ⊆ BV(G≺) be defined as in (20). The assumption τ /∈ C≺ implies
M ̸= ∅ by Proposition 1.20, therefore k ≥ 1 holds. For each i ∈ {1, .., k} we define the quantity

ui :=
⟨σ,vi⟩

⟨σ,vi⟩−⟨τ,vi⟩ . We observe that

(1− ui)⟨σ, vi⟩+ ui⟨τ, vi⟩ = ⟨σ, vi⟩ −
⟨σ, vi⟩2

⟨σ, vi⟩ − ⟨τ, vi⟩
+
⟨σ, vi⟩⟨τ, vi⟩
⟨σ, vi⟩ − ⟨τ, vi⟩

= 0 for all i.

Now assume w.l.o.g that the minimum over all ui is attained at u1. In particular û = u1, and
(1− u1)⟨σ, v1⟩+ u1⟨τ, v1⟩ = 0. Moreover, for all vi ∈ BV(G≺) the following holds:

(1− û)⟨σ, vi⟩+ û⟨τ, vi⟩ ≥ (1− ui)⟨σ, vi⟩+ û⟨τ, vi⟩ (22)

≥ (1− ui)⟨σ, vi⟩+ ui⟨τ, vi⟩ = 0. (23)

The inequalities at (22) and (23) may be justified as follows:
If ⟨τ, vi⟩ ≥ 0 then (22) and (23) are both trivial. (Recall that ⟨σ, vi⟩ ≥ 0 holds due to σ ∈ C≺.)
If ⟨τ, vi⟩ < 0 then û ≤ ui implies both û⟨τ, vi⟩ ≥ ui⟨τ, vi⟩ and (1− û)⟨σ, vi⟩ ≥ (1− ui)⟨σ, vi⟩.

Thus, Proposition 1.20 implies (1 − û)σ + ûτ ∈ ∂C≺. Finally, note that for any u′ ∈ [0, 1] with
u′ > û we have

(1− u′)⟨σ, v1⟩+ u′⟨τ, v1⟩ < (1− û)⟨σ, v1⟩+ û⟨τ, v1⟩ = 0 , (24)

where the inequality follows analogously to (22) and (23) above. Again by Proposition 1.20, this
would imply (1− u′)σ+ u′τ /∈ C≺. Hence, the quantity defined in (21) is precisely the one defined in
(19). This concludes the proof.
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Proposition 2.2 provides us with a method for computing the next weight vector ω.

Algorithm 2 GetNextW(G≺, σ, τ)

Input: G≺ ▷ a marked Gröbner basis
σ ▷ a starting weight vector σ ∈ C≺
τ ▷ a target weight vector τ ∈ C≺′

Output: ω ▷ The next weight vector in the Gröbner walk

BV ← BV(G≺) ▷ The bounding vectors of G≺
û ← 1
for vj in BV do

if ⟨τ, vj⟩ < 0 then ▷ Check if vj ∈M
uj ← ⟨σ,vj⟩

⟨σ,vj⟩−⟨τ,vj⟩
if uj < û then

û ← uj ▷ return the smallest uj
end if

end if
end for
return (1− û)σ + ûτ

If the conditions for Proposition 2.2 are fufilled, then the output of “GetNextW” is precisely the
û defined in (21). In order for Algorithm 1 “StandardGroebnerWalk” to avoid being stationary
we must ensure that û > 0 holds. The following two results describe when this is the case.

Lemma 2.3. Let σ,τ and ≺, ≺′ weight vectors and monomial orders respectively, such that σ is the
first row of A≺ and τ is the first row of A≺′ . We assume τ /∈ C≺. Let û ∈ [0, 1] be the quantity
defined in (19). Then:

C≺ = C≺′
σ

=⇒ û > 0.

Proof. We prove this by contraposition. If û = 0, then there exists a v ∈ BV(G≺) such that

⟨σ, v⟩ = 0 and ⟨τ, v⟩ < 0. (25)

Now write v once again as v = α−β, where xα = in≺(g) and β ∈ supp(g− in≺(g)) for some g ∈ G≺.
Then we may rewrite (25) as

⟨σ, α⟩ = ⟨σ, β⟩ and ⟨τ, α⟩ < ⟨τ, β⟩ . (26)

But now because τ is taken to be the first row of the matrix of the target monomial order A≺′

(26) implies that in≺(g) = xα ̸= xβ = in≺′
σ
(g). ( The monomial order ≺′

σ compares σ-degrees first,
and then τ -degrees) By Corollary 1.17 C≺ ̸= C≺′

σ
holds, proving “ =⇒ ” by contraposition.

In Algorithm 2 “GetNextW”, the restriction from Lemma 2.3 that τ /∈ C≺ holds is omitted.
This is done on purpose to ensure a termination condition, the correctness of which is given by the
following lemma.

Lemma 2.4. Let ≺ be a monomial order, and σ and τ be weight vectors with σ ∈ C≺. Then the
following holds:

τ ∈ C≺ =⇒ GetNextW(G≺, σ, τ) = τ .

Proof. If τ ∈ C≺ then ⟨τ, v⟩ ≥ 0 for all v ∈ BV(G≺). Therefore the first “if” condition of Algorithm 2
is never fulfilled. It follows that û = 1 holds, implying GetNextW(G≺, σ, τ) = τ .
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Remark 2.5. In the setting of Algorithm 1, if σ ∈ ∂C≺ then C≺ = C≺′
σ
may not hold the very

first time “GetNextW” is called in the while loop. In this case it may be that the output of
“GetNextW” is û = 0, in which case GetNextW(G≺, σ, τ)= σ would hold. ( An example of this
is seen in Example 2.6.) However, the StandardGroebnerWalk does not remain stationary: the
end of the first while loop, the starting monomial order/reduced Gröbner basis of the second iteration
are updated to G≺′

σ
and ≺′

σ. Clearly σ ∈ C≺′
σ
and it is the first row of A≺′

σ
. Thus, at every call of

“GetNextW” in StandardGroebnerWalk, the conditions for Lemma 2.3 are fulfilled at every
at every iteration of the while loop of Algorithm 1 with possible exception of the very first one.

C≺′
σ

C≺

C≺′

τ

σ

Figure 3: If σ lies on the boundary of C≺, then C≺ ̸= C≺′
σ

may hold. It is a consequence of
Proposition 1.25 that upon leaving C≺, the line segment στ enters C≺′

σ
.

Example 2.6. The marked Gröbner basis of the ideal I = ⟨x2 + yz, xy + z2⟩ with respect to the
graded lexicographic ordering is

Ggrevlex = {xy + z2, x2 + yz, y2z − xz2}.

σ = (1, 1, 1) is a natural choice of starting vector for any Gröbner walk with this starting monomial
order. In the step-by-step example in Section 3.1 we will see that

G≺′
σ
= {xy + z2, x2 + yz, xz2 − y2z, y3z + z4} ≠ Ggrevlex,

implying C≺ ̸= C≺′
σ
by Corollary 1.17. Furthermore, the output of GetNextW(Ggrevlex, σ, τ) is

once again σ.

We now turn our attention to the lifting step.

2.3 The lifting step

In this section we assume that we have computed the weight vector ω at which στ leaves the starting
cone and discuss how to use this to obtain a Gröbner basis of the Gröbner cone we have just entered.
A consequence of Proposition 1.25 is that once the line segment στ exits C≺ at ω ∈ στ it enters C≺′

ω
.

This is because ≺′
ω is a refinement of ≺′. Now we would like to compute a Gröbner basis of I w.r.t

≺′
ω. Proposition 1.9 implies that after computing ω we get a reduced Gröbner basis of the ideal of

initial forms inω(I) “for free”:

Lemma 2.7. Let I be an ideal and ≺ a monomial order. For G≺ = {g1, ..., gr} and ω ∈ C≺ ∩Qn≥0,
the set

inω(G≺) =
{
inω(g1), ..., inω(gr)

}
is the marked Gröbner basis of inω(I) w.r.t ≺.
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Proof. ω ∈ C≺, so by Lemma 1.23 C≺ω
= C≺. This in turn implies G≺ = G≺ω

by Corollary 1.17.
Thus, inω(G≺) = inω(G≺ω

) is the marked Gröbner basis of inω(I) w.r.t ≺ by Proposition 1.9.

The idea now is to convert inω(G≺) to a reduced Gröbner basis of the ideal of initial forms inω(I)
with respect to the new monomial order ≺′

ω and subsequently “lift” it to a Gröbner basis of I. The
correctness of this procedure is proven via the following two results:

Lemma 2.8. Let ω ∈ C≺ and M = {m1, ...,ms} be the reduced Gröbner basis of inω(I) with respect
to ≺′

ω. For all i ∈ {1, ..., s} there exists an r ∈ N and polynomials hi1, ..., hir ∈ Q[x1, ..., xn] such that

mi =

r∑
j=1

hijinω(gj), (27)

and the following 3 statements hold for all j ∈ {1, ..., r} with hi,j ̸= 0:

(i) in≺(hijinω(gj)) ≺ in≺(mi) or in≺(hijinω(gj)) = in≺(mi).

(ii) degω(mi) = degω(hijinω(gj)).

(iii) Every polynomial hij is ω-homogeneous.

Proof. Fix an i ∈ {1, ..., s}. As the polynomials inω(G≺) form a Gröbner basis of inω(I) w.r.t ≺, the
representation of mi as in (27) can be obtained by dividing mi by the elements of inω(G≺) w.r.t ≺.
By Proposition 1.9 inω(G≺) is a Gröbner basis of inω(I) w.r.t ≺, therefore by the correctness of the
division algorithm (cf. Theorem A.10), a representation in which (i) holds exists. (This is sometimes
referred to as a standard representation).

Points (ii) and (iii) are consequences of the division algorithm in the specific setting in which
both mi and the polynomials {inω(gi), .., inω(gr)} are ω-homogeneous. (This is the case here due to
Theorem A.24, as both sets are reduced Gröbner bases of the homogeneous ideal inω(I).) To prove
this rigorously, set a := degω(mi) and bj := degω(inω(gj)) for j ∈ {1, ..., r}.

At the first iteration of the division algorithm, for some j, a polynomial of the form cγx
γinω(gj)

is subtracted from mi to eliminate the leading term LT≺(mi), where

cγx
γ =

LT≺(mi)

LT≺(inω(gj))
.

Thus, Remark 1.3 implies

degω(cγx
γ) = a− bj and degω(cγx

γinω(gj)) = a = degω(mi). (28)

The term cγx
γ is added to hij .

Observe that the “new” polynomial in the second iterationmi−cγxγ(inω(gj)) remains ω−homogeneous
of degree a. It is evident that at every subsequent step of the division algorithm, if the leading term
of the “new” polynomial is divisible by inω(gj), then a term of ω-degree a − bj must be multiplied
with inω(gj) and subtracted from mi. This term is then added to hij .
Consequently, for each j, the polynomial hij is either zero or ω−homogeneous with degree a − bj .
Combined with (28), this implies both (ii) and (iii).

We now use this representation of the elements of M to obtain a Gröbner basis of I w.r.t ≺′
ω.
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Theorem 2.9. Let G≺ = {g1, ..., gr} be the reduced Gröbner basis of an ideal I w.r.t ≺, ω ∈ C≺, and
M = {m1, ...ms} be the reduced Gröbner basis of inω(I) with respect to ≺′

ω. For each i ∈ {1, ..., s}
we write

mi =

r∑
j=1

hijinω(gj) ,

where hi1, ...hir ∈ Q[x1, ..., xn] have the properties from Lemma 2.8.
We subsequently define the “lifted” polynomial

fi :=

r∑
j=1

hijgj ∈ I. (29)

Then the following holds:

G := {f1, ..., fs} is a Gröbner basis of I w.r.t ≺′
ω.

Proof. We start by observing that for i ∈ {1, ..., s} the initial form inω(fi) is precisely mi:

inω(fi) = inω(

r∑
j=1

hijgj) =

r∑
j=1

hijinω(gj) = mi , (30)

where the second inequality holds due to points (ii) and (iii) of Lemma 2.8: all non-zero polyno-
mials hij are homogeneous, and the polynomials hijinω(g) have equal ω−degree. Thus, the terms of
fi that vanish upon taking inω(fi) are precisely those of the ω−tail of gi.
To see that G forms a Gröbner basis, we observe that

in≺′
ω
(G) = ⟨{in≺′

ω
(f1), ...in≺′

ω
(fs)}⟩

= ⟨{in≺′(inω(f1)), ...in≺′(inω(fs))}⟩
= ⟨{in≺′(m1), ..., in≺′(ms)}⟩ (31)

= ⟨{in≺′(inω(m1)), ...in≺′(inω(ms))}⟩
= in≺′

ω
(M)

= in≺′
ω
(inω(I)) (32)

= in≺′(inω(inω(I))) = in≺′
ω
(I).

The equality (31) follows from the observation (30). (32) holds as M is a Gröbner basis of inω(I)
w.r.t ≺′

ω. Furthermore, we used that in≺′
ω
(f) = in≺′(inω(f)) for all f ̸= 0 (cf. (5)) multiple times.

Per definition, G is a Gröbner basis of I w.r.t ≺′
ω.

We prove two properties of the lifted Gröbner basis G which will be needed later.

Corollary 2.10. In the setting of Theorem 2.9, let M = {m1, ...,mr} be the reduced Gröbner basis
of inω(I) w.r.t ≺′

ω. Then the lifted Gröbner basis G = {f1, ..., fr} of I w.r.t ≺′
ω has the following

properties:

(i) G is inclusion minimal.

(ii) For all i ∈ {1, ..., r}: in≺′
ω
(fi) = in≺′

ω
(mi).

Proof. For (i): Recall that inω(fi) = mi for all i. If we assume that G is not inclusion minimal
then (w.log) ⟨{f2, ...., fr}⟩ = I. This would imply ⟨{inω(f2), ..., inω(fr)}⟩ = ⟨{m2, ...,mr}⟩ = inω(I),
contradicting the fact that M is reduced (and in particular inclusion minimal).
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For (ii): in≺′
ω
(fi) = in≺′(inω(fi)) = in≺′(mi) = in≺′

ω
(mi) follows once again from (5).

The following corollary of Theorem 2.9 gives us a straightforward method for computing the lifted
Gröbner basis:

Corollary 2.11. Let G = {f1, ..., fr} be the set of polynomials defined in (29) of Theorem 2.9. For
each i ∈ {1, ..., r}, fi may be written as

fi = mi −mi
≺,

where mi
≺ is the normal form of mi w.r.t ≺ and I (cf. Definition A.14).

Proof. As in Theorem 2.9, let G≺ = {g1, ..., gr} be the reduced Gröbner basis of I w.r.t ≺. Our very
first observation is that

ω ∈ C≺ =⇒ C≺ = C≺ω =⇒ G≺ = G≺ω

by Corollary 1.24 and Corollary 1.17. Consequently, dividing any polynomial by {in≺(g1), ..., in≺(gr)}
w.r.t ≺ is equivalent to dividing by {in≺ω (g1), ..., in≺ω (gr)} w.r.t ≺ω. Because of this, we prove the
equivalent statemtent fi = mi −mi

≺ω for all i ∈ {1, ..., s}.
Fix an i ∈ {1, .., r}. Rewriting mi as in (27), we see that

mi − fi =
r∑
j=1

hijinω(gj)−
r∑
j=1

hijgj =

r∑
j=1

−hij tailω(gj), (33)

where tailω(gj) := gj − inω(gj). Thus, the statement we would like to prove is equivalent to showing

mi
≺ω =

r∑
j=1

−hij tailω(gj).

Proposition A.12 states that the residue mi
≺ω is uniquely determined by two properties:

(i) There exists a p ∈ I such that mi = p+mi
≺ω .

(ii) No term of mi
≺ω is divisible by any of the monomials in the set {in≺ω

(g1), ...in≺ω
(gr)}.

Therefore, if we can show that
∑r
j=1−hij tailω(gj) possesses both of these properties, we are done.

For (i), note that (similarly to above):

mi = fi +

r∑
j=1

−hij tailω(gj) =
r∑
j=1

hijgj︸ ︷︷ ︸
∈I

+

r∑
j=1

−hij tailω(gj)

so
∑r
j=1−hij tailω(gj) fulfills (i) .

For (ii), we first claim that
∑r
j=1 hij tailω(gj) = fi

inω(I),≺
, where fi

inω(I),≺
is the remainder

obtained by dividing fi by the marked Gröbner basis {inω(g1), ..., inω(gr)} of inω(I). (Recall that
G≺ = G≺ω implies that this set is a Gröbner basis of inω(I) w.r.t ≺ by Proposition 1.9.). In general,
the division algorithm gives us

fi =

r∑
j=1

pijinω(gj) + fi
inω(I),≺

for some pi1, ..., pij ∈ Q[x1, ..., xn]. However, we may take pij = hij , where the hij are a representation
of mi defined in (27) / Lemma 2.8. This follows somewhat technically from the multivariate division
algorithm; in the first step of the algorithm, the leading term

in≺ω
(fi) = in≺(inω(fi)) = in≺(mi)
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is eliminated by subtracting some polynomial of the form cγx
γinω(gj) for j ∈ {1, ..., r}. This is

precisely the multiple of inω(gj) required to eliminate the term in≺(mi) of mi when reducing mi

w.r.t ≺ (by dividing by elements of inω(G≺)): thus, x
γ is a term of the polynomial hij from (27) for

some j ∈ {1, ..., r}. A similar argument for subsequent steps of the division algorithm implies that
setting pij = hij obtains one possible representation of fi. Consequently we may write

fi =

r∑
j=1

hijinω(gj) + fi
inω(I),≺

= mi + fi
inω(I),≺

. (34)

Therefore (combining with (33)) we have that

fi
inω(I),≺

= fi −mi =

r∑
j=1

hij tailω(gj).

By correctness of the division algorithm, no term of the residue fi
inω(I),≺

is divisible by any of the
monomials {in≺(inω(g1)), ..., in≺(inω(gr))} = {in≺ω

(g1), ..., in≺ω
(gr)}. Thus,

∑r
j=1 hij tailω(gj) has

property (ii) as well. This concludes the proof.

We can now describe the steps of the “Lift” subroutine:

Algorithm 3 Lift(G≺, ω, τ)

Input: G≺ ▷ The starting marked Gröbner basis
ω ▷ A weight vector in Qn≥0 ∩ C≺
τ ▷ The target vector (of which ≺′ is a refinement)

Output: G ▷ A Gröbner basis of I w.r.t ≺′
ω

inwG ← inω(G≺)
M ← Buchberger(inwG, ≺′

ω) ▷ compute a Gröbner basis of inω(G) w.r.t ≺′
ω

for m in M do
r ← mI,≺ ▷ subtract from each m ∈M its normal form w.r.t G≺
m ← m - r

end for
return M

The correctness of this procedure is a direct consequence of Corollary 2.11.
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2.4 Proof of correctness

We now have all the results necessary to prove the correctness of Algorithm 1.

Theorem 2.12. Algorithm 1 StandardGroebnerWalk is correct and terminates after finitely
many iterations of the while loop.

Proof. For readability, we present the algorithm once again on the following page. We prove the
correctness of the algorithm via a series of case distinctions.

Trivial conversion: If ≺′ and ≺ are such that C≺ = C≺′ , then in particular τ ∈ C≺. Thus,
Lemma 2.4 implies GetNextW(G≺, σ, τ) = τ . Corollary 1.17 implies that G≺ = G≺′ = G≺′

τ
,

therefore the lifting step makes no changes to G≺: the Gröbner basis of initial forms M of inτ (I)
from Algorithm 3 is inτ (G≺) itself, and subtracting normal forms returns once again G≺ = G≺′ .
After this, “done” gets set to True and the algorithm terminates, outputting G≺. Indeed, this is the
desired output, as equality of the Gröbner cones implies G≺ = G≺′ by Corollary 1.17.

Initialization: At the very first call of the while loop, either τ ∈ C≺ holds (in which case Lemma 2.4
implies GetNextW(G≺, σ, τ) = τ ) or the conditions for Lemma 2.3 are fulfilled. In either case,
Remark 2.5 implies that from the second iteration of the while-loop onwards, the weight vector ω ∈ στ
computed by “GetNextW” is distinct from the starting vector σ, and closer to τ . For the newly
computed ω, one of the following two cases holds:

Case 1: ω ∈ C≺′

Then Lemma 1.23 implies C≺′
ω
= C≺′ . Thus, Lift(G≺ ω, τ) computes a Gröbner basis with respect

to ≺′ and reducing it gives us G≺′
ω
= G≺′ . The next iteration of the while loop is the “trivial conver-

sion” setting described above: “GetNextW” returns τ , so “done” is set to True and the algorithm
terminates.

Case 2: ω /∈ C≺′

In this case, the reduced Gröbner basis computed in the rest of the iteration is G≺′
ω
̸= G≺′ (due to

Corollary 1.17), so we are not yet done. (Indeed, in this case ω ̸= τ , so “done” remains false). Thus,
the algorithm reitarates after updating the starting vector, order and Gröbner basis: The starting
vector σ is set to ω and G≺ is set to G≺′

ω
(i.e. the reduced Gröbner basis obtained upon applying

a reduction algorithm to the output of Lift(G≺, ω, τ) ). The matrix A≺ is updated to A≺′
ω
which

may be obtained by taking the matrix A≺′ and adding the first row ω (cf. Corollary 1.34)

Termination: As the Gröbner cones form a polyhedral fan, the line segment στ has a non-empty
intersection with finitely many full-dimensional cones C1, ..., Ck ∈ GFan(I). Due to convexity (cf.
Remark C.3), each intersection στ ∩ Ci is either a line segment or a point. This (combined with the
fact that û ≥ 0 holds at every call of GetNextW) implies that upon exiting a cone Ci, our path
along στ does not reenter it at a later stage. Thus, τ is reached after finitely many steps, implying
that the algorithm terminates.

28



Algorithm 1 StandardGroebnerWalk(G≺, A≺, A≺′)

Input: G≺ ▷ the marked Gröbner basis of I w.r.t ≺
A≺ and A≺′ ▷ monomial order matrices for ≺ and≺′

Output: G≺′ ▷ the marked Gröbner basis of I w.r.t ≺′

σ ← (A≺)1,· ▷ a weight vector refined by ≺
τ ← (A≺′)1,· ▷ a weight vector refined by ≺′

done ← “False”
while done = “False” do

ω ← GetNextW(G≺, σ, τ) ▷ the weight vector at which στ exits C≺
G′ ← Lift(G≺, ω, τ) ▷ outputs a Gröbner basis of I w.r.t ≺′

ω

G′ ← Reduce(G′) ▷ interreduction

if ω = τ then
done ← “True” ▷ if we have reached τ , terminate and output G′

else ▷ otherwise, update the starting Gröbner basis/order to ≺′
ω

σ ← ω
G≺ ← G′

A≺ ← A≺′
ω

▷ the new starting monomial order is ≺′
ω

end if
end while
return G′
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3 First Examples

To see the algorithm in action, we carry out several Gröbner basis conversions using Algorithm 1
“StandardGroebnerWalk” on the ideal

I = ⟨x2 + yz, xy + z2⟩ ◁Q[x, y, z]. (35)

3.1 Converting to Lex

In this subsection, we pick the graded reverse lexicographic order as our starting monomial order. We
apply Buchberger’s algorithm to the generators and find that the marked Gröbner basis with respect
to this order is

G≺ = Ggrevlex = {xy + z2, x2 + yz, y2z − xz2}.

A monomial order matrix for ≺ is given by

A≺ =

1 1 1
0 0 −1
0 −1 0

 . (36)

We want to use Algorithm 1 to compute the marked Gröbner basis of I with respect to the
lexicographic order, which we represent with the monomial order matrix

A≺′ =

1 0 0
0 1 0
0 0 1

 . (37)

We go through the algorithm step by step:

• the initialization sets σ = (1, 1, 1), τ = (1, 0, 0), and done = “False”.

• We then call GetNextW(G≺, σ, τ). This involves computing the bounding vectors BV(G≺),
which are

BV(G≺) = {(1, 1,−2), (2,−1,−1), (−1, 2,−1)} =: {v1, v2, v3}. (38)

We observe that ⟨τ, vi⟩ < 0 holds only for i = 3. So we set

û =
⟨σ, v3⟩

⟨σ, v3⟩ − ⟨τ, v3⟩
=

0

0− 1
= 0 .

It follows that our “next” weight vector ω is once again σ. (This is an example of the situation
described in remark 2.5.)

• Next, we call Lift(G≺, ω, τ). This first computes the set of initial forms

inω(G≺) = {xy + z2, x2 + yz, y2z − xz2}

which coincides with G≺ itself; this is no coincidence, as our ideal I is (1, 1, 1)-homogeneous.
“Lift” then computes the Gröbner basis of inω(G≺) with respect to the monomial order ≺′

σ,
which is encoded as the matrix

A≺′
σ
=

1 1 1
1 0 0
0 1 0

 .

This is
M = {x2 + yz, xy + z2, xz2 − y2z, y3z + z4} =: {m1,m2,m3,m4}.
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We then subtract mi
≺ from each mi and reduce (in this case, both of these steps are trivial)

and obtain
G′ =M = {x2 + yz, xy + z2, xz2 − y2z, y3z + z4}.

Because the weight vector computed in this iteration is ω = (1, 1, 1) ̸= τ , we are not yet done.
Therefore, we update the starting vector/Gröbner basis to σ := ω = (1, 1, 1) and G≺ := G′ and
go again.

• In this iteration GetNextW(G≺, σ, τ) first computes the bounding vectors

BV(G′) = {(2,−1,−1), (1, 1,−2), (1,−2, 1), (0, 3,−3)} =: {v1, v2, v3, v4}.

This time we observe that ⟨τ, vi⟩ ≥ 0 for all i, and therefore û = 1, implying ω = τ .

• Lift(G≺, τ , τ) starts by computing the initial forms

inω(G≺) = {xy, x2, xz2, y3z + z4} ,

which already form a Gröbner basis of the initial ideal w.r.t ≺′
ω. Therefore M = inω(G

′) and
lifting to I gives us once again

G′ = G≺ = {x2 + yz, xy + z2, xz2 − y2z, y3z + z4},

which is also already reduced w.r.t ≺′
ω.

• As ω = τ , done is set to “True” and the algorithm terminates, outputting

G′ = {x2 + yz, xy + z2, xz2 − y2z, y3z + z4} = Glex.

The point of this first example is more to verify the correctness of StandardGroebnerWalk than
to underline any particular advantage of the walk over Buchberger’s algorithm: the path followed
was almost trivial, and the computation of M in the first call of “Lift” is tantamount to converting
Ggrevlex to Glex with Buchberger’s algorithm. The fact that the algorithm in this case was, in effect,
“Buchberger with extra steps” is in part because the corresponding cones Cgrevlex and Clex share a
face of codimension 2, and our chosen starting vector σ lies on this face. The goal of the next example
is to illustrate the importance of the path chosen.

3.2 Changing paths

Let us now carry out the same conversion with a different path. That is, we start with the same
starting Gröbner basis as before:

G≺ = Ggrevlex = {xy + z2, x2 + yz, y2z − xz2} =: {g1, g2, g3, g4}.

Our goal is once again to compute a Gröbner basis with respect to lex. However, now we choose to
represent these monomial orders by the matrices

A≺ =

1 1 0
1 1 1
0 0 −1

 and A≺′ =

3 1 0
1 0 0
0 1 0


respectively. Because of this, at initialization σ := (1, 1, 0) and τ := (3, 1, 0). These are vectors

lying in the interiors of C≺ and C≺′ respectively. We present a less verbose description of the steps
of StandardGroebnerWalk below.

• At initialization, σ = (1, 1, 0), τ = (3, 1, 0), done = “False”.
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• GetNextW(G≺, σ, τ) computes the same set BV(G≺) = {v1, v2, v3} as in (38). This time
⟨τ, vi⟩ is only negative for i = 3, at which ⟨τ, vi⟩ = −1. Consequently û = 1

2 and
GetNextW(G≺, σ, τ) = (2, 1, 0) = ω.

• Lift(G≺, ω, τ) first computes the initial forms

inω(G≺) = {xy, x2, y2 − xz2}

and converts them to the following Gröbner basis of inω(I) with respect to ≺′
ω:

M = {xy, x2, y2z − xz2, y3z} = {m1,m2,m3,m4}.

• We observe that for i ∈ {1, 2, 3}, mi = inω(gi) ∈ inω(G≺). Therefore subtracting the normal
forms mi

≺ amounts to retrieving the corresponding elements gi ∈ G≺.

For m4, we have the following:

m4 = z2(xy) + y(y2z − xz2) = z2inω(g1) + y(inω(g3).

Thus, the fourth element of the Gröbner basis w.r.t ≺′
ω is

z2g1 + yg3 = z2(xy + z2) + y(y2z − xz2) = y3z + z4.

So ultimately GetNextW(G≺, σ, τ) outputs the marked Gröbner basis

G′ = {g1, g2, g3, g4} = {xy + z2, x2 + yz, xz2 − y2z, y3z + z4}.

• As ω ̸= τ , we reiterate with starting vector σ := ω = (2, 1, 0) and starting Gröbner basis
G≺ := G′

• In this iteration, GetNextW(G≺ , (2, 1, 0), (3, 1, 0)) computes the same bounding vectors as
in the second iteration of the previous example:

BV(G≺) = {(1, 1,−2), (2,−1,−1), (1,−2, 1), (0, 3,−3)} =: {v1, v2, v3, v4}

As ⟨τ, vi⟩ ≥ 0 for all i = 1, ..., 4, GetNextW(G≺, σ, τ) = τ , and therefore done gets set to
“True”.

• The remaining computations are now identical to the previous example (Sharp-sighted readers
will have noticed that G′ is precisely Glex) and StandardGroebnerWalk terminates after
one more while loop, outputting the same Gröbner basis as the one computed in Section 3.1.

Cgrevlex

Clex

Cglex

τσ ω1

2

3

4

1 2 3 4

Figure 4: The “new” path from σ = (1, 1, 0) to τ = (3, 1, 0) viewed in the ω3 = 0 plane. The line
segment crosses into the target cone Clex at ω = (2, 1, 0).
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We observe that modifying the path changes the computations in a non-trivial way. With both
choices of path, Buchberger’s algorithm is called once on a set of the form inω(G≺). In the first
example, this amounted to calling it on G≺ itself, whereas in the second case the initial forms
are “proper” and consist almost entirely of monomials, implying a more efficient conversion (and
subsequent reduction) of M . Clearly the computational advantage in this example is negligible;
however, it is enough to illustrate the principle behind the Gröbner walk’s strategy: instead of one
“heavy” conversion with Buchberger’s algorithm we carry out many “light” intermediate conversions,
which amount to Buchberger’s algorithm on sets that consist mainly of monomials. A discussion of
how to choose the path such that the lengths of the initial forms are minimal is the topic of Section 4.

3.3 Same ideal, different steps

We perform one last computation on the same ideal to illustrate an example where the path crosses
into more than one Gröbner cone. To this end, we consider once again

I = ⟨x2 + yz, xy + z2⟩,

but now take the lexicographic ordering lex to be the starting monomial order. That is,

G≺ = {x2 + yz, xy + z2, xz2 − y2z, y3z + z4}

is our starting Gröbner basis. In this example, we convert G≺ to the Gröbner basis with respect
the monomial order glex(1,3,0) (the graded lexicographic order, refined by the matrix (1, 3, 0)) using
StandardGroebnerWalk. Following Proposition 1.33he standard choice of monomial order matrix
for the refinement order ≺′ is

A≺′ =

1 3 0
1 1 1
1 0 0

 . (39)

We report only the outputs of the subroutines.

• Upon intialization, σ := (1, 0, 0), τ := (1, 3, 0) and done = “False” .

• GetNextW(G≺, σ, τ) = (1, 12 , 0) =: ω .

• Lift computes inω(G≺) = {x2, xy, xz2 − y2z, y3z} and converts it to the following Gröbner
basis M of inω(I) w.r.t ≺′

ω, which has the monomial order matrix

A≺′
ω
=

1 1
2 0

1 3 0
1 1 1

 .

This is
M = {y2z − xz2, xy, x2} =: {m1,m2,m3},

which is subsequently lifted to a basis of I by computing fi := mi −mi
≺ for each i. This gives

us
G′ = {y2z − xz2, xy + z2, x2 + yz}

which is already a marked Gröbner basis of I w.r.t ≺′
ω.

• done ̸= “True”, so we update our starting parameters to σ := ω and G≺ := G′ and go again.

• GetNextW(G≺, σ, τ) = (1, 2, 0) =: ω
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• “Lift” computes inω(G≺) = {y2z, xy, x2 + yz} and converts it to

M ′ := {x3, xy, x2 + yz},

which is a Gröbner basis of inω′(I) w.r.t the monomial order ≺′, refined by ω′. The correspond-
ing matrix is:

A≺′
ω

′ =

1 2 0
1 3 0
1 0 0

 .

(Importantly, we note that the weight vector (1, 12 , 0) computed in the previous iteration is no
longer a row of this matrix.)

• Subtracting the remainders mi
G≺ from the mis in this case retrieves

G′ = {x3 − z3, xy + z2, x2 + yz},

which is already reduced w.r.t ≺′
ω. done ̸= “False” still holds, so we set reiterate after updating

G≺ := G′ and σ := ω.

• GetNextW(G≺, ω, τ) = τ , therefore we set done = “True” and perform the final computa-
tions:

Now, inτ (G≺) = {x3, xy, yz} consists of monomials, and it is quick to check that it is the reduced
Gröbner basis of inτ (G≺) w.r.t ≺′

τ . In particular G≺′ = G≺′
τ
therefore (analogously to the last

step of the previous example) subtracting the normal forms retrieves G≺′ once again. Reducing
is trivial up to updating the marking in≺′(g3) =: yz, after which the algorithm terminates,
outputting

G≺′ = {x3 − z3, xy + z2, yz + x2}.

Cgrevlex

Clex

Cglex(1,3,0)

τ

σ
ω1

ω2

1

2

3

4

1 2 3 4

Figure 5: The path in the Gröbner fan from σ = (1, 0, 0) to τ = (1, 3, 0) viewed in the ω3 = 0 plane,
as well as the intermediate weight vectors ω1 and ω2

.

3.4 A first modification: integer weight vectors

In certain computer algebra software, including Macaulay2 and OSCAR, monomial orders may only be
specified by matrices/weight vectors with integer entries. Because of this, a common modification in
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implementations of StandardGroebnerWalk is to scale the output ofGetNextW by the greatest
common divisor of its entries. ([AGK97] refers to this as the “Zig-Zag” walk.)

Algorithm 4 GetNextIntegerW(G≺, σ, τ)

Input: G≺ ▷ a marked Gröbner basis w.r.t ≺
σ ▷ a starting weight vector in C≺
τ ▷ A target weight vector

Output: ω ▷ The next weight vector in the walk, scaled so that it is in Zn≥0

BV ← BV(G≺)
û ← 1
for vj in BV do

if ⟨τ, vj⟩ < 0 then

uj ← ⟨σ,vj⟩
⟨σ,vj⟩−⟨τ,vj⟩

if uj < û then
û ← uj

end if
end if

end for
ω ← (1− û)σ + ûτ ▷ compute next ω along στ
ω ← 1

gcd(ω)ω ▷ scale for integer entries
return ω

“gcd(ω)” is the greatest common divisor of the entries of ω and may be computed in O(log n)
time. For ω ∈ Qn≥0 this factor is greater than zero, implying that 1

gcd(ω)ω lies in precisely the same

Gröbner cones as ω. An important consequence is that the modified path transverses exactly the
same Gröbner cones as the original path as a combination of Proposition 1.20 and Proposition 1.25.
This means that the intermediate conversions using Buchberger’s algorithm are exactly same in the
standard and Zig-Zag walks. The only downside is that the modification implies that intermediate
weight vectors no longer lie on the line segment στ .

Example 3.1. In the conversion from Section 3.3, replacing “GetNextW” with “GetNextIntegerW”
yields the intermediate weight vectors ω1 = (2, 1, 0) and ω2 = (1, 2, 0).

Cgrevlex

Clex

Cglex(1,3,0)

τ

σ

ω1

ω2

1

2

3

4

1 2 3 4

Figure 6: The path the algorithm takes in the conversion from Section 3.3 after replacingGetNextW
with GetNextIntegerW. The dashed lines correspond to the paths to τ traced prior to scaling.
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4 Path perturbation

The goals of this section are to witness the advantages of the Gröbner walk in action and introduce
further improvements made possible by optimizing the choice of path. The statement and proof of
Proposition 4.1, as well as the description and proof of correctness of the algorithms in Section 4.3
are novel contributions. The results from Section 4.1 and Section 4.2 are taken primarily from [Tra00]
and [Fuk+07]; we added more detail to the proofs, and stated them with notation consistent with ours.

Throughout this chapter, we shall consider the following task as a running example:

Given the ideal

I = ⟨ 6 + 3x3 + 16x2z + 14x2y3, 6 + y3z + 17x2z2 + 7xy2z2 + 13x3z2 ⟩ (40)

compute the reduced Gröbner basis of I w.r.t the lexicographic ordering with x ≻ y ≻ z.

Despite consisting of only two polynomials over three variables, solving this problem by applying
Buchberger’s algorithm directly on the generators of I is slow. The main bottleneck consists of the
computation and reduction of S-pairs; we encounter S-pairs of degree up to 46, which each have up
to 466 terms and coefficients of order up to 10590. Using the in-built method gb in Macaulay2 with
our benchmarking machine (cf. Section 6) took approximately 80 seconds.

In contrast, the computation of the reduced basis w.r.t grevlex with gb took just 0,28 seconds.
An intuitive approach to the task using the Gröbner walk is therefore to first compute Ggrevlex and
then walk from Cgrevlex to Clex. This can be done by calling
StandardGroebnerWalk(Ggrevlex, A≺, ≺′), with A≺ and A≺′ defined as in (36)/(37). The al-
gorithm terminates in approximately 10 seconds, almost one order of magnitude faster than pure
Buchberger. There are 17 iterations of the while loop, and although each of these iterations entails
a Gröbner basis conversion, these conversions are significantly faster due to the fact that they are
performed on a set of truncated polynomials of the form inω(G) instead of G itself.

Upon closer inspection, one notices that the majority of the time expended for Algorithm 1 is
spent at the last two iterations of the while loop: Subsequently, the lifting step computes a Gröbner
basis with respect to lex consisting of polynomials with up to 466 terms. The most computation-
ally expensive step is the subsequent reduction of this lifted Gröbner basis which involves reducing
S-pairs with between 44 and 466 terms. This expends more than half of the total computation time.
In comparison, the maximal length of the initial forms encountered in the previous intermediate con-
versions was 8, implying that these reductions were computationally much lighter (the complexity
of Buchberger depends on the length of the support of the polynomials). We shall see that a con-
tributing factor to these heavy final conversions is that the target vector τ = (1, 0, 0) lies on a face of
codimension ≥ 2.

As seen in the previous chapter, the initial forms inω(gi) encountered at each intermediate con-
version depend on the choice of path between C≺ and C≺′ . The intermediate conversions are at their
lightest when the path from C≺ to C≺′ is chosen in such a way that the length of the initial forms
inω(G≺) is minimal. We know from Proposition 1.20 that if ω ∈ int(C≺) then
inω(G≺) = {in≺(g1), ..., in≺(gs)}. In particular, the set inω(G) consists solely of monomials. The
following result may be considered as a generalization of this statement to weight vectors which lie
on the boundary of Gröbner cones.
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Proposition 4.1. Let I be an ideal, ≺ a monomial order, G≺ = {g1, ..., gs} the marked Gröbner
basis of I w.r.t ≺, C≺ the corresponding Gröbner cone, and ω ∈ ∂C≺ ∩ Qn≥0 be a weight vector on
the boundary of C≺.
The length of the initial forms inω(G≺) = {inω(g1), ...inω(gs)} (i.e. | supp(inω(g))|) is minimal on
the interior of the facets of C≺ in the following sense:

If ω ∈ relint(F ) for some face F of C≺ of codimension ≥ 2, then there exists a facet F ′ such
that F ⊂ F ′ and for all ω′ ∈ relint(F ′) we have that

inω(gi) = inω′(gi) + hi for all i = 1, ..., s

where hi is a (possibly empty) sum of terms in the ω−tail of gi. Futhermore, hi ̸= 0 holds for at
least one i ∈ {1, ..., s}.

Proof. Let F be a face of C≺ of codimension ≥ 2 and ω ∈ relintF . We may reformulate the claim in
terms of inclusions of supports. It suffices to show that there exists a facet F ′ with F ⊂ F ′ such for
all ω′ ∈ relint(F ):

supp(inω′(gi)) ⊆ supp(inω(gi)) for all i = 1, .., s ,

where strict inclusion holds for at least one i.
Let BV(G≺) = {v1, ..., vm} be the bounding vectors of G≺. By Proposition 1.20, the bounding vectors
form an H-description of C≺ in the sense that

C≺ =
{
x ∈ Rn : ⟨x, vi⟩ ≥ 0 for all i ∈ {1, ...,m}

}
,

where some of the inequalities may be redundant.
We may assume without loss of generality that the first k elements of BV(G≺) give a minimal

H-description of C≺
1. That is, the matrix with rows consisting of the first k bounding vectors.

M :=


v1
v2
...
vk

 ∈ Zk,n

is of full rank (as C≺ is full-dimensional) and the Gröbner cone C≺ may be written as

C≺ = {x ∈ Rn :Mx ∈ Rk≥0}.

In this setting, any facet F ′ ⊂ C≺ may be described as

F ′ = {x ∈ Qn≥0 :Mx ∈ Rk≥0} ∩Hvj

for some j ∈ {1, .., k}, where Hvj := {x ∈ Rn : ⟨x, vj⟩ = 0} is the hyperplane with normal vector
vj . Similarly, any proper face F ⊂ F ′ may be obtained by intersecting with further hyperplanes of
this form. That is,

F = F ′ ∩Hvi1 ∩Hvi2 ∩ ... ∩Hvil

for some i1, ..., il ∈ {1, ..., k} \ {j}. For simplicity, we consider the case l = 1 and denote vi1 := vl.
In other words, we assume F is a face of codimension 2 contained in F ′ (The l > 1 case follows
analogously). Then for any ω ∈ relintF , we have that

⟨ω, vl⟩ = ⟨ω, vj⟩ = 0 and ⟨ω, vi⟩ > 0 for all i ∈ {1, ..., k} \ {j, l}. (41)

1The task of determining a minimal H-description is dual to that of determining the vertex set of the convex hull
of a point configuration.
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Due vl ∈ BV(G≺), there exists (by Definition 1.18) a polynomial g ∈ G≺ such that vl = α − β,
where in≺(g) = xα and β ∈ supp(g) \ {α}. The statement (41) implies ⟨ω, α⟩ = ⟨ω, β⟩, which in turn
implies β ∈ inω(gi).

On the other hand, for any ω′ ∈ relint(F ′) we have that

⟨ω′, vj⟩ = 0 and ⟨ω′, vi⟩ > 0 for all i ∈ {1, ..., k} \ {j}. (42)

In particular, ⟨ω′, vl⟩ > 0, and it follows that ⟨ω′, α⟩ > ⟨ω′, β⟩.
Thus, β ∈ supp(inω(g)) \ supp(inω′(g)). By comparing the conditions (41) and (42) we see that

supp(inω′(g)) ⊂ supp(inω(g)) for all g ∈ G≺ ,

and from β ∈ supp(inω(g)) \ supp(inω′(g)) it follows that strict inclusion holds for at least one g.
This completes the proof.

For any two full-dimensional cones C1 and C2 in Rn which intersect at a common facet F , a
generic line segment between two points x ∈ intC1 and y ∈ intC2 intersects F in its relative interior
relint(F ). This, combined with Proposition 4.1 suggests that it may be advantageous to initialize
the Gröbner walk in such a way that the starting and target vectors σ and τ fulfill σ ∈ int(C≺) and
τ ∈ int(C≺′), in order to ensure intersections on low-codimension faces. This practice is called path
perturbation and was first suggested in [AGK97]. Their ideas were later expanded on by [Tra00] and
[Fuk+07].

In the example (40), modifying the steps of the Gröbner walk from Cgrevlex to Clex by setting
σ = (6, 3, 2) ∈ int(Cgrevlex) and τ = (445, 32, 1) ∈ int(Clex) changed the nature and computations of
StandardGroebnerWalk in the following way:

Starting vector Target vector number of maximal maximal time
σ τ conversions | supp(inω(g))| coeff. length (s., approx)

(1, 1, 1) (1, 0, 0) 17 44 130 11.01
(1, 1, 1) (445, 32, 1) 54 2 1147 4.26
(6, 3, 2) (1, 0, 0) 27 44 138 11.42
(6, 3, 2) (445, 32, 1) 56 2 1147 3.92

Table 1: Properties and durations of StandardGroebnerWalk in Macaulay2 with varying choices
of starting and target vectors.

We observe that the significant improvements on performance are seen when we modify the target
vector. This is in accordance with our observations at the beginning of this chapter, as this modifi-
cation avoids the bottlenecks which occur at the very last conversion. In our running example, the
interior vectors (6, 3, 2) ∈ int(Cgrevlex) and (445, 32, 1),∈ int(Clex) were computed after computing
corresponding Gröbner cones. The aim of the following two sections is to discuss how such interior
weight vectors may be computed without the Gröbner cones being known ahead of time.

4.1 Perturbed weight vectors

In the setting of StandardGroebnerWalk, the marked Gröbner basis with respect to the starting
monomial order ≺ is known at every iteration. Via the bounding vectors BV(G≺) we obtain an
H- description of the corresponding cone C≺. An interior starting vector σ ∈ int(C≺) can then be
computed with linear methods (By Proposition 1.20, it suffices to determine a vector σ ∈ Qn≥0 such
that ⟨σ, v⟩ > 0 for all v ∈ BV(G≺)).

Conversely, the Gröbner cone of the target monomial order is not known in advance. Therefore
we would like a method of determining an interior point of a Gröbner cone without its H-description
being given. This is possible via the monomial order matrix of ≺′.
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For a matrix A ∈ Qk×n of full row rank, recall the matrix ordering on Qn defined via the following
relation (cf. Definition B.3):

For u, v,∈ Qn, u <A v ⇐⇒ Au <lex Av.

Lemma 4.2. Let A ∈ Qk×n be a matrix of full row rank. We denote the rows of A by ωi ∈ Qn for
i ∈ {1, .., k}. Let V ⊂ Qn be a finite set of non-zero vectors such that:

0 <A v for all v ∈ V .

Then there exists a δ > 0 such that for all ε ∈ (0, δ), the following holds:

⟨ω1 + εω2 + ε2ω3 + ...+ εk−1ωk, v⟩ > 0 for all v ∈ V .

Proof. We fix n and prove the claim by induction over k.
If A = (ω1) ∈ Q1,n then the left-hand side of (4.2) is ω1 itself. In this case ⟨ω1, v⟩ > 0 for all v ∈ V
follows directly from the assumption Av >lex 0.
Now assume the statement holds for k − 1. We start by defining the set

V ′ :=
{
v ∈ V : ⟨ωk−1, v⟩ > 0

}
.

We write V ′ = {v1, ..., vj}. For each i ∈ {1, ...j} there exists a δi > 0 such that for all ε ∈ (0, δi) :

⟨ωk−1 + εωk, vi⟩ > 0. (43)

Let δ̃ := mini{δi}. We fix a ε ∈ (0, δ̃) and define the matrix A′ with rows

A′ =


ω1

ω2

...
ωk−1 + εωk

 ∈ Qk−1,n.

Claim: A′ has full row rank and 0 <A′ v holds for all v ∈ V .

proof of claim: The fact that A′ has full row rank follows directly from the initial assumption that A
has full row rank. Now let v ∈ V . Then one of the following three cases hold:

Case 1: ⟨ωk−1, v⟩ < 0. Then the assumption 0 <A v implies Av >lex 0, meaning that

⟨w1, v⟩ = ... = ⟨wj−1, v⟩ = 0 and ⟨ωj , v⟩ > 0 for some j ∈ {1, ..., k − 2}.

In particular, A′v >lex 0 also holds, as a tie is broken before k − 1. This implies 0 <A′ v.

Case 2: ⟨ωk−1, v⟩ = 0. Then Av >lex 0 implies either ⟨ωj , v⟩ > 0 for some j ∈ {1, ..., k − 2}
or ⟨ωj , v⟩ = 0 for all j ∈ {1, .., k − 1} and ⟨ωk, v⟩ > 0. In either case we have in particular that
A′v > 0 ⇐⇒ 0 <A′ v.

Case 3: ⟨ωk−1, v⟩ > 0. Then by construction ⟨ωk−1 + εωk, v⟩ > 0. This together with Av >lex 0
implies A′v > 0 as the tie is broken at the latest at the last row of A′.
Taken together, the three cases prove the claim.
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Due to the claim, we may now apply the induction hypothesis to the matrix A′. There exists a
δ′ > 0 such that for all ε′ ∈ (0, δ′) the following holds:

⟨ω1 + ε′ω2 + (ε′)2ω3 + ...+ (ε′)k−3ωk−2 + (ε′)k−2(ωk−1 + ε′ωk), v⟩ > 0 for all v ∈ V . (44)

Finally, upon setting δ := min(δ̃, δ′) and combining (43) with (44), we obtain

⟨ω1 + εω2 + ε2ω3 + ...+ εk−1ωk, v⟩ > 0 for all v ∈ V , ε ∈ (0, δ)

which proves the lemma.

Proposition 4.3. Let A≺ = [ω1, ..., ωn] ∈ Qn,n≥0 be a monomial order matrix of ≺ with non-negative
entries, where each ωi ∈ Qn≥0 denotes a row of A≺. For an ideal I, let C≺ denote its Gröbner cone
with respect to ≺. There exists a ε > 0 such that

ω1 + εω2 + ε2ω3 + ...+ εn−1ωn ∈ int(C≺).

Proof. Let G≺ = {g1, ..., gs} and v ∈ BV(G≺) be a bounding vector. Then v is of the form v = αi−βi,
for some i ∈ {1, ..., s}, where xαi = in≺(gi) and βi ∈ supp(gi − in≺(gi)). In particular v ̸= 0, and
BV(G≺) has finite cardinality.
We observe that

xβi ≺ xαi ⇐⇒ A≺αi >lex A≺βi

⇐⇒ A≺(αi − βi) >lex 0

⇐⇒ A≺v >lex 0

⇐⇒ 0 <A≺ v.

Therefore the set BV(G≺) and the matrix A≺ fulfill the conditions for Lemma 4.2. It follows that
there exists a δ > 0 such that for all ε ∈ (0, δ) :

⟨ω1 + εω2 + ε2ω3 + ...+ εn−1ωn, v⟩ > 0 for all v ∈ BV(G≺). (45)

It now follows from the second part of Proposition 1.20 that ω1+εω2+ε
2ω3+ ...+ε

n−1ωn ∈ int(C≺),
as desired.

The vector in (45) will appear several times throughout the following chapters, so we give it a
name.

Definition 4.4. Let A≺ = [ω1, ..., ωn] be a monomial order matrix, where ωi denotes once again a
row of A≺. For ε > 0, the ε-perturbed weight vector of A≺ (of degree n) is

ωε := ω1 + εω2 + ε2ω3 + ...+ εn−1ωn.

Using this and recalling Definition 1.14 of the Gröbner cone we can reformulate Proposition 4.3
as follows:

Corollary 4.5. In the setting of Proposition 4.3, for sufficiently small ε > 0, the ε−perturbed vector
ωε represents ≺. Equivalently,

inωε(I) = in≺(I).

Example 4.6. Consider I = ⟨x2 + yz, xy + z2⟩ ◁ Q[x, y, z] and the graded reverse lexicographic
monomial order grevlex. As seen in section 3.1, reduced Gröbner of I with respect to this ordering
is

Ggrevlex := G≺ = {xy + z2, x2 + yz, y2z − xz2}

which gives us the bounding vectors
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BV(G≺) = {(1, 1,−2), (2,−1,−1), (−1, 2,−1)} =: {v1, v2, v3}.

A monomial order matrix for ≺ is given by

A≺ =

1 1 1
0 0 −1
0 −1 0

 =:

 ω1

ω2

ω3


and indeed for ε := 1

3 (and thus ωε = (1, 89 ,
6
9 ) ) we observe that

⟨ωε, v1⟩ =
5

9
, ⟨ωε, v2⟩ =

4

9
, and ⟨ωε, v3⟩ =

1

9
,

which implies ωε ∈ int(C≺). Consequently wε represents grevlex.

4.2 Deterministic perturbation

In Example 4.6, the perturbed vector ωε represents grevlex for I for all ε < 1
2 . The perturbed vector

for ε := 1
2 does not lie in the interior of C≺ as ⟨ωε, v3⟩ = 0. A general method for the computing such

an ε in the general case was first introduced by Quoc-Nam Tran in [Tra00].

Theorem 4.7. ([Tra00, Theorem 3.1]) Let I be an ideal, ≺ be a monomial order with matrix
A≺ ∈ Qn,n≥0 . We denote the rows of A≺ by ω1, ..., ωn ∈ Qn≥0 and its individual entries by aij.
(In accordance with Remark 1.31 we assume that all entries of A≺ are non-negative.)
Let G≺ = {g1, ..., gs} be the reduced Gröbner basis of I with respect to ≺. We define the quantities

M1 := max
1≤i,j≤n

{|aij |} , M2 := max
1≤i≤s

{ max
β∈supp(gi)

n∑
k=1

|βk|} and ε :=
1

M1M2
.

Then:

ω1 + εω2 + ε2ω3 + ...+ εn−1ωn = ωε ∈ int(C≺).

In particular, ωε represents ≺ for I.

Proof. We start by showing the following claim:

Claim: For any d ∈ N with d ≥M1M2, the vector

w̃ := dn−1ω1 + dn−2ω2 + ...+ dωn−1 + ωn (46)

represents ≺. In particular ω̃ ∈ int(C≺).

Once again, we invoke Proposition 1.20: that is, we show ⟨w̃, v⟩ > 0 for all v ∈ BV(G≺).
Let v ∈ BV(G≺) be a bounding vector of the form α−β, where xα = in≺(g) and β ∈ supp(g−in≺(g))
for some g ∈ G≺. Our goal is to show ⟨w̃, α⟩ > ⟨w̃, β⟩.

in≺(g) = xα implies xβ ≺ xα and therefore β <A≺ α. Thus, there exists a k ∈ {1, ..., n} such that

⟨ωk, α⟩ > ⟨ωk, β⟩ and ⟨ωi, α⟩ = ⟨ωi, β⟩ ∀i ∈ {1, ..., k − 1}.

If k = n then ⟨w̃, α⟩ > ⟨w̃, β⟩ follows immediately.

For the case that k < n, we have that both

⟨ωk, α⟩ ≥ ⟨ωk, β⟩+ 1 (47)
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and (by construction of d)

⟨ωi, β⟩ ≤M1

n∑
j=1

βj ≤M1M2 ≤ d− 1 for all i ∈ {1, ..., n}. (48)

Equation (48) implies the following:

n∑
i=k+1

dn−i⟨ωi, β⟩ ≤
n∑

i=k+1

dn−i(d− 1) = dn−k − 1

Combining this with (47) yields

dn−k⟨ωk, α⟩ ≥ dn−k(⟨ωk, β⟩+ 1)

= dn−k⟨ωk, β⟩+ dn−k

> dn−k⟨ωk, β⟩+
n∑

i=k+1

dn−i⟨ωi, β⟩ =
n∑
i=k

dn−i⟨ωi, β⟩.

This in turn implies

⟨w̃, α⟩ =
n∑
i=1

dn−i⟨ωi, α⟩

=

k−1∑
i=1

dn−i⟨ωi, α⟩+ dn−k⟨ωk, α⟩+
n∑

i=k+1

dn−i⟨ωi, α⟩

>

k−1∑
i=1

dn−i⟨ωi, β⟩+
n∑
i=k

dn−i⟨ωi, β⟩+
n∑

i=k+1

dn−i⟨ωi, α⟩︸ ︷︷ ︸
≥0∗

≥ ⟨w̃, β⟩,

where * follows from our assumption that the rows of A≺ are non-negative. This proves the claim.

The statement of Theorem 4.7 now follows from the claim by setting d = M1M2 and observing
that for ε = 1

d we have the relationship w̃ = dn−1ωε. Therefore for all v ∈ BV(G≺)

⟨w̃, v⟩ > 0 ⇐⇒ ⟨ 1

dn−1
w̃, v⟩ > 0 ⇐⇒ ⟨ωε, v⟩ > 0

holds, implying ωε ∈ int(C≺) by Proposition 1.20.

Remark 4.8. It may not be the case that the quantity 1
M1M2

from the previous theorem is a valid

choice of δ in Lemma 4.2; that is, there may be quantites ε < 1
M1M2

for which ωε /∈ int(C≺). However,
in practical applications we are interested in a concrete choice of ε, and the Theorem 4.7 delivers this.
In fact, for the same reasons behind the integer weight vector modification described in Section 3.4,
it may be advantageous to choose w̃ (as defined in (46)) instead ωε as our starting vector, as both
represent ≺, but only the latter has integer entries. In this setting, we refer to the quantity d as the
perturbation factor of the weight vector w̃.

The ε from the previous result depends on the maximal total degree of a Gröbner basis element
g ∈ G≺. In practice, we therefore run once again into the difficulty of not knowing this quantity in
advance during the perturbation the target vector. The following result introduces an a priori bound
for this quantity given only some other generating set of I.
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Lemma 4.9. ([Tra00, Lemma 2.1]) Let F ⊂ k[x1, ..., xn] be a finite collection of polynomials. We
define

M := max
f∈F
{ max
β∈supp(f)

n∑
k=1

|βk|}.

Let I = ⟨F ⟩ and ≺ be a monomial order. the total degree of the polynomials in the reduced Gröbner
basis G≺ of I w.r.t ≺ is bounded above by

(M2 + 2M)2
n−1

. (49)

Proof. consult [Dub90].

4.3 The perturbed Gröbner walk

An algorithm for the Gröbner walk with deterministically perturbed starting and target vectors is
given below:

Algorithm 5 dPerturbedWalk(G≺, A≺, A≺′)

Input: G≺ ▷ the marked Gröbner basis of I w.r.t ≺
A≺ and A≺′ ▷ monomial order matrices for ≺ and≺′ with non-negative entries

Output: G≺′ ▷ the marked Gröbner basis of I w.r.t ≺′

M≺ ← max(entries(A≺)) ▷ Compute the largest entries of the matrices
M≺′ ← max(entries(A≺′))

M2 ← DubéBound(G≺) ▷ compute the Dubé bound

d≺ ← M≺ ·M2 ▷ The perturbation factors
d≺′ ← M≺′ ·M2

σ̃ ← Perturb(A≺, d≺) ▷ Compute the perturbed vectors
τ̃ ← Perturb(A≺′ , d≺′)

A≺ ←
(
σ̃
A≺

)
▷ New matrices for ≺ and ≺′

A≺′ ←
(

τ̃
A≺′

)
return StandardGroebnerWalk(G≺, A≺, A≺′)

where “DubéBound” is the quantity d from Lemma 4.9 and “Perturb” is the following subrou-
tine:
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Algorithm 6 Perturb(A, d)

Input: A ∈ Qk,n ▷ a k × n matrix with rows ω1, ..., ωk ∈ Qn≥0

d ∈ N ▷ a non-negative integer

Output: w̃ ▷ a perturbed weight vector with perturbation factor d

output ← zeros(n) ▷ An n−dimensional vector with all zero entries
for i in {1, ..., k} do

output ← output + di−1ωi
end for
return output

The correctness of dPerturbedWalk is an almost direct consequence of the correctness of
StandardGroebnerWalk (cf. Theorem 2.12). Strictly speaking, the modification to the target
monomial matrix in the penultimate line implies that the output of dPerturbedWalk is the marked
Gröbner basis with respect to the ordering ≺′, refined by τ̃ . However, Theorem 4.7 implies
τ̃ ∈ int(C≺′). Therefore (by Corollary 1.17), it follows that G≺′

τ̃
= G≺′ as desired.

The fact that all intersections of the perturbed path with boundaries of cones generically occur
on facets implies minimality of the length of initial forms by Proposition 4.1,which was our desired
outcome. However, the following example illustrates a major difficulty which the deterministically
perturbed walk encounters in practice.

Example 4.10. Let I = ⟨x2 + yz, xy + z2⟩ be the ideal from the examples in Section 3. The
deterministic degree bound obtained by applying Lemma 4.9 to I is

(22 + 2 ∗ 2)2
3−1

= 84 = 4096.

However, the actual highest degree of an element of any Gröbner basis of I is 4. Using the deterministic
degree bound to compute d for the algorithm above leads to intermediate weight vectors of order 108,
which unnecessarily slows down computations.

Macaulay2 does not allow for monomial orders to be specified by weight vectors with entries of
order greater than 1010; thus, the perturbed walk using the deterministic Dubé bound is not only
ill-advised, but indeed impossible to implement. A possible way around these unnecessarily long
weight vectors is heuristic perturbation: here, we perturb the target vector by some prescribed factor
d and execute the walk with this τ̃ as the target vector. Before terminating, we assert whether
the outputted Gröbner basis G≺′

τ̃
has the properties we desire. This approach may be especially

applicable in problems of elimination (cf. Section 6), in which a wider class of Gröbner bases would
solve the problem at hand.
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Algorithm 7 hPerturbedWalk(G≺, A≺, A≺′ , d)

Input: G≺ ▷ the marked Gröbner basis of I w.r.t ≺
A≺ and A≺′ ▷ monomial order matrices for ≺ and≺′ with non-negative entries
d ▷ A positive integer

Output: G≺′ ▷ the marked Gröbner basis of I w.r.t ≺′

τ̃ ← Perturb(A≺′ , d) ▷ perturb τ by the prescribed factor

Anew ←
(

τ̃
A≺′

)
Gnew ← StandardGroebnerWalk(G≺, A≺, Anew)
if isGroebnerBasis(Gnew, A≺′) then ▷ checks if Gnew is the desired basis
return Gnew
else ▷ If not, walk from Gnew to G≺′

return StandardGroebnerWalk(Gnew, Anew, A≺′)
end if

There are two reasons we do not perturb the starting vector σ in the heuristically perturbed walk.
The first is that we cannot guarantee that the perturbed vector lies in C≺, which may lead to issues
at initialization. The second reason is empirically, computational bottlenecks involving coefficient
swell occur at the final conversions, as this is where both the number of terms of the initial forms
and their coefficients are at their largest. If we can ensure that we enter the final cone at a facet, the
impact of the large coefficients is minimized due to the truncation of initial forms.

Example 4.11. Calling hPerturbedWalk with a perturbation factor of d = 64 on the ideal
from the running example (40) yielded a Gröbner basis w.r.t lex after 53 conversions, whereby no
additional conversions were necessary after computing Gnew. This took a total of 2.9 seconds, which
is an improvement on StandardGroebnerWalk by a factor of 3.

Further discussion/comparison of the perturbed Gröbner walk is present in Section 6. For now,
we turn our attention to another variant of the Gröbner walk: the generic Gröbner walk.
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5 Symbolic perturbation: the generic Gröbner walk

The generic Gröbner walk was first presented in [Fuk+07] and takes the idea of path perturbation
one step further. Here, the perturbed line segment στ is replaced by a symbolic line segment in such
a way that intersections at facets are guaranteed at every iteration. Crucially, this happens in such
a way that intermediate computations are independent of the weight vectors encountered. It can be
viewed as an attempt to preserve the advantages of the deterministically perturbed walk, without
the computational costs of weight vectors with large entries. The material of this section is based
on [Fuk+07]: our contributions consist of the formal proof of correctness of the generic walk and its
subroutines, and the in-depth discussion of the 3-dimensional example in Section 5.4.

Let I be an ideal. To simplify notation in the upcoming sections, we rename the matrices A≺ and
A≺′ to S and T respectively. In accordance with Remark 1.31, we assume that both matrices are
invertible n× n matrices with non-negative entries. We denote their rows by σi and τi respectively.
Summing up, we write

S := A≺ =


σ1
σ2
...
σn

 and T := A≺′ =


τ1
τ2
...
τn

 , where S, T ∈ GLn(Q) and σi, τi ∈ Qn≥0 for all i.

By Theorem 4.7, there exist small enough positive quantities δ and ε such that

σδ ∈ int(C≺) and τε ∈ int(C≺′),

where σδ and τε are the δ− and ε− perturbed vectors of S and T respectively (cf. definition 4.4).
We now consider the Gröbner walk from C≺ to C≺′ along the δ-ε-perturbed path, which we define as
the line segment

l(u) := (1− u) · σδ + u · τε , where u ∈ [0, 1].

Like StandardGroebnerWalk and dPerturbedWalk, the generic Gröbner walk works by follow-
ing this line segment, computing a reduced Gröbner basis every time it enters a new full-dimensional
cone by lifting a basis of initial forms with “Lift” (cf. Algorithm 3). The main point of difference lies
in the method by which the initial forms are computed at every step: instead of computing the actual
weight vector ω at which the line enters a new cone, inω(I) is computed by identifying the inner facing
facet normal of the face on which ω lies. Crucially, all computations end up being independent of the
quantities ε and δ. In order to identify these facet normals, we describe a construction introduced by
[Fuk+07] called the facet preorder.

5.1 The facet preorder

Definition 5.1. Let I ◁Q[x1, ..., xn] be an ideal. We define the Bounding vectors of I as

BV(I) :=
⋃
≺

BV(G≺) ,

where ≺ varies across all monomial orders.

Remark 5.2. By Corollary A.19 and Definition 1.18, BV(I), consists of finitely many vectors in Zn.
Let <S and <T be the strict total orderings on Rn induced by the matrices S and T (cf Defini-

tion B.3).
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Definition 5.3. For two monomial orders ≺ and ≺′ represented by matrices S and T , the path region
with respect to ≺ and ≺′ (or, equivalently S and T ) is the set

R≺,≺′ := RS,T := {x ∈ Rn : x >S 0 and x <T 0}. (50)

Example 5.4. In the example in Section 3.3 ≺ is the lexicographic order on Q[x, y, z] and ≺′ is the
graded lexicographic order, refined by (1, 3, 0). The path region with respect to these orderings is

RS,T =

{
x ∈ R3 : x >S 0 and x <T 0

}

=

{
x ∈ R3 :

x1x2
x3

 >lex

0
0
0

 and

 x1 + 3x2
x1 + x2 + x3

x1

 <lex

0
0
0

}

=

{
x ∈ R3 : x1 > 0 ∨ (x1 = 0 ∧ x2 > 0) ∨ (x1 = x2 = 0 ∧ x3 > 0)

}
∩
{
x ∈ R3 : x1 + 3x3 < 0 ∨ (x1 + 3x2 = 0 ∧ x1 + x2 + x3 < 0) ∨ (x1 + 3x3 = x1 + x2 + x3 = 0 ∧ x3 < 0)

}
.

This is an unbounded, impure, half-open polyhedral region in R3.

Remark 5.5. The relevance of the previous two definitions to our setting is that all of the facets
intersected by the generic line segment l have inner normal vectors lying in RS,T ∩ BV(I).

To identify the normal vectors of the facets which the perturbed path l intersects, we introduce
a relation on the elements of BV(I)∩RS,T . To do this, we must define yet another type of ordering.
Given a strict total ordering < on Qn, we may construct an ordering <̃ on Qn×n via lexicographic
extension: that is, given two matrices A,B ∈ Qn×n, we compare rows with < until a tie is broken.

Definition 5.6. Let vi, vj ∈ BV(I) ∩RS,T . The facet preorder <F is the relation given by

vi <F vj if and only if Tviv
t
j <̃S Tvjv

t
i , (51)

where <̃S denotes the lexicographic extension of <S onto Qn×n.
It is clear that <F is a strict preorder; anti-reflexivity and transitivity follow directly from the

anti-reflexivity/transitivity properties of <S (cf. Lemma B.4). The facet preorder is instrumental in
determining the facets intersected by l. The following theorem and its proof are a reformulation of
the observations from [Fuk+07, pg.10].

Theorem 5.7. Let ≺, ≺′ be monomial orders and assume that C≺ ̸= C≺′ . For small enough δ, ε > 0,
the perturbed line segment l = σδτε exits C≺ at a facet which has an inner-facing normal vector which
is minimal in the set BV(G≺) ∩RS,T with respect to <F .

Proof. We start by associating each bounding vector vi ∈ BV(G≺) with the quantity

ui :=
⟨σδ, vi⟩

⟨σδ, vi⟩ − ⟨τε, vi⟩
.

Let δ and ε be small enough such that by Proposition 4.3, σδ ∈ int(C≺) and τε ∈ int(C≺′). In
particular, C≺ ̸= C≺′ implies τε /∈ C≺. With this choice of ε and δ, the following two statements are
consequences of Lemma 4.2 and Proposition 1.20:

⟨σδ, v⟩ > 0 ⇐⇒ 0 <S v for all v ∈ BV(G≺) , (52)

and
There exists a v ∈ BV(G≺) such that ⟨τε, v⟩ < 0 ⇐⇒ v <T 0. (53)

Thus, BV(G≺) ∩ RS,T ̸= ∅ and (analogously to the proof of Proposition 2.2), the point at which
the line segment σδτε exits C≺ is precisely l(û), where

û = min
{
ui | vi ∈ BV(G≺) ∩RS,T

}
. (54)

The theorem is a consequence of the following claim:
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Claim: ui < uj ⇐⇒ vi <F vj for all vi ∈ BV(I) , vj ∈ BV(I) ∩RS,T .

Proof of claim: We start by defining the set

N1 := {⟨τk, vi⟩vj : k ∈ {1, ..., n}, vi, vj ∈ BV(I)},

where we remind the reader that τk is the k−th row of the monomial order matrix T of ≺′.
Lemma 4.2 implies that there exists a small enough δ > 0 such that for all elements x, y ∈ N1:

x <S y ⇐⇒ ⟨σδ, x⟩ < ⟨σδ, y⟩. (55)

This follows by applying the lemma to the set of vectors
{
x− y | x, y ∈ N1, x >S y

}
.

For a δ > 0 fulfilling (55) we subsequently define

Nδ := {⟨σδ, vi⟩vj : vi, vj ∈ BV(I)},

and observe that (again by Lemma 4.2) there exists an ε > 0 such that for all w, z ∈ Nδ:

w <T z ⇐⇒ ⟨τε, w⟩ < ⟨τε, z⟩. (56)

We pick δ and ε small enough such that (52), (53), and (55), (56) are all fulfilled. Then for all
vi ∈ BV(I) and vj ∈ BV(I) ∩RS,T the following holds:

ui < uj ⇐⇒
⟨σδ, vi⟩

⟨σδ, vi⟩ − ⟨τε, vi⟩
<

⟨σδ, vi⟩
⟨σδ, vj⟩ − ⟨τε, vj⟩

⇐⇒ ⟨τε, vi⟩
⟨σδ, vi⟩

<
⟨τε, vj⟩
⟨σδ, vj⟩

⇐⇒ ⟨τε, ⟨σδ, vj⟩vi⟩ < ⟨τε, ⟨σδ, vi⟩vj⟩
(56)⇐⇒ ⟨σδ, vj⟩vi <T ⟨σδ, vi⟩vj .

Where the last equivalence holds because ⟨σδ, vj⟩vi, ⟨σδ, vi⟩vj ∈ Nδ. Now note that for any row τk of
the matrix T we have that due to the fact that δ fulfills (55):

⟨τk, ⟨σδ, vj⟩vi⟩ < ⟨τk, ⟨σδ, vi⟩vj⟩ ⇐⇒ ⟨σδ, ⟨τk, vi⟩vj⟩ < ⟨σδ, ⟨τk, vi⟩⟩
(55)⇐⇒ ⟨τk, vi⟩vj <S ⟨τk, vj⟩vi.

The vectors in the last inequality are precisely the kth rows of the matrices Tviv
t
j and Tvjv

t
i

respectively. Thus, the comparisons in the last line above are tantamount to comparing rows of Tviv
t
j

and Tvjv
t
i with the lexicographic order on Qn. Combining this with the definition of of <F (cf.

Definition 5.6), we obtain

ui < uj ⇐⇒ Tviv
t
j <̃S Tvjv

t
i ⇐⇒ vi <F vj . (57)

This completes the proof of the claim.

Let vi be minimal in BV(G≺) w.r.t <F . It follows from (54) and Proposition 2.2 that l(ui) = l(û)
is the point of ∂C≺ at which the line segment leaves C≺. It remains to show that the corresponding
vector vi is facet-defining. To this end, if we assume that vi = vj for two bounding vectors
vi, vj ∈ BV(G≺) ∩RS,T , it follows from the converse of (57) that Tviv

t
j = Tvjv

t
i . As T is invertible,

this implies viv
t
j = vjv

t
i , which in turn means that vj ∈ posHull(vi). Thus, any two such vectors

define the same face of C≺, which for dimension reasons must be a facet.
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An important observation is that the facet preorder is dependent only on S and T . Crucially, it
is independent of the values of δ and ε; this leads to the main theoretical advantage of the generic
walk. For two distinct cones C≺ and C≺′ , an algorithm for computing the inner facet normal of the
facet on which ω := l(û) lies can be described as follows:

Algorithm 8 GetNextV(G≺, ṽ, S, T )

Input: G≺ ▷ The marked Gröbner basis w.r.t ≺
ṽ ▷ The bounding vector from the previous iteration (“−∞” at initialization)
S ▷ A monomial order matrix for ≺ with non-neg entries
T ▷ A monomial order matrix for ≺′ with non-neg entries

Output: v ▷ The element of BV(G≺) corresponding to the facet intersecting with l

BV ← BV(G≺)
V ← { }
for v in BV do

if ṽ <F v and v ∈ RS,T then
V ← V ∪{v} ▷ Collect all v ∈ BV(G≺) ∩RS,T with ṽ <F v

end if
end for
if V == {} then ▷ if no such vectors exist, signal termination

return +∞
else

return min<F
(V ) ▷ Return the minimal element of V w.r.t <F

end if

The correctness of Algorithm 8 is a direct consequence of Theorem 5.7. The following lemma is
important for the correctness/termination of the generic walk.

Lemma 5.8. In the setting of Algorithm 8,

GetNextV(G≺, ṽ, S, T )= +∞ ⇐⇒ G≺ = G≺′ .

Proof. “ ⇐= ” Assume G≺ = G≺′ . Then (with ε > 0 small enough such that Theorem 5.7 holds)
τε ∈ int(C≺′) . It follows that ⟨τε, v⟩ > 0 ⇐⇒ 0 <T v for all v ∈ BV(G≺). In particular, v /∈ RS,T
by definition of RS,T . Consequently, the set V in Algorithm 8 is empty, and so
GetNextV(G≺, ṽ, S, T ) outputs +∞.
“ =⇒ ” If GetNextV(G≺, ṽ, S, T )̸= +∞, then by Algorithm 8 there exists a v ∈ BV(G≺) ∩ RS,T
such that v >F ṽ. In particular, v ∈ RS,T implies that v <T 0 ⇐⇒ ⟨τε, v⟩ < 0, which implies
τε /∈ C≺ by Proposition 1.20. This in turn means that G≺ ̸= G≺′ due to Corollary 1.17.

5.2 The generic lifting step

Let ω := l(ui) be the point along the perturbed line segment at which it exits C≺ (We assume
C≺ ̸= C≺′). In the setting of the generic walk, we know an inner facet normal vi ∈ BV(G≺) for
the facet on which ω lies, but not ω itself. Because of this, we first require a method of obtaining a
generating set of the initial forms inω(I) when only vi is known.
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Lemma 5.9. Let G≺ = {g1, ..., gs} be the reduced Gröbner basis of I with respect to ≺ , v ∈ BV(G≺)
be an inner facing facet-defining normal vector to C≺, i.e

⟨ω, v⟩ ≥ 0 for all ω ∈ C≺ , and Fv := C≺ ∩Hv = {ω ∈ C≺ : ⟨ω, v⟩ = 0} is a facet.

For any weight vector ω ∈ Qn≥0 ∩ relint(Fv) and i ∈ {1, ..., s}, the initial form inω(gi) may be written
as

inω(gi) = xα +
∑
β∈S′

gi

cβx
β,

where xα = in≺(gi), cβ is the coefficient of xβ in g, and

S′
gi = {β ∈ supp(gi) : α− β ∈ posHull(v)}.

Proof. We fix an i and a ω ∈ relint(Fv) show the set equality supp(inω(gi)) = S′
gi ∪ {α}.

“⊆”: α ∈ supp(inω(gi)) holds as a direct consequence of ω ∈ C≺ and Corollary 1.24. For any
β ∈ S′

gi , if α− β and u are positive multiples of each other, then clearly

⟨ω, α− β⟩ = 0 ⇐⇒ ⟨ω, u⟩ = 0.

Thus, β is a term for which ⟨ω, β⟩ is maximal, and β ∈ inω(gi) follows.

“⊇”: If β ∈ supp(inω(gi)) then ⟨α−β, ω⟩ = 0, implying α−β ∈ ω⊥. Thus, α−β and the normal
vector v are positive multiples of each other, and β ∈ S′

gi follows. (We know that α − β and v are
positive multiples of each other as assuming the contrary would yield ⟨α − β, v⟩ < 0, contradicting
in≺(gi) = xα by Proposition 1.20.)

A modified routine for obtaining inω(G≺) = {inω(g1), ..., inω(gs)} my now be described as follows:

Algorithm 9 GenericInitialForms(G≺, v)

Input: G≺ ▷ The marked starting Gröbner basis
v ▷ a facet-defining bounding vector such that ω ∈ relint(Fv)

Output: inω(G≺) = {inω(g1), .., inω(gs)} ▷ the set of initial forms w.r.t ω

G ← List(G≺)
output ← {}
for g in G do

α ← ExponentVector(in≺(g))
p ← xα ▷ add in≺(g) to inω(g) and keep the marking
for cβx

β in Terms(g) do
if α− β ∈ posHull(v) then ▷ Check if ⟨α, v⟩ = ⟨β, v⟩

p ← p+ cβx
β ▷ If this is the case, add the term to inω(g)

end if
end for
output ← output ∪{p}

end for
return output

The correctness follows from Lemma 5.9. Due to Lemma 2.7, upon keeping the markings of the
input Gröbner basis G≺ we obtain a marked Gröbner basis inω(G≺) of inω(I).
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In every non-trivial iteration of StandardGroebnerWalk, the lifting step ( cf. Algorithm 3)
works by computing a Gröbner basis of inω(I) w.r.t ≺′

ω using Buchberger’s algorithm. As the exact
weight vector ω remains unknown throughout the generic Gröbner walk, we describe a subroutine for
obtaining the lifted basis which is independent of ω and then prove its correctness. Interreduction is
not optional in the generic Gröbner walk, so we include it as part of this subroutine.

Algorithm 10 GenericLift(G≺, u, S, T )

Input: G≺ ▷ the marked Gröbner basis of I w.r.t ≺
u ▷ the bounding vector computed in the previous iteration
S
T ▷ Monomial order matrices for ≺ and ≺′

Output: G ▷ a Gröbner basis of I w.r.t (≺′)ω

inwG ← GenericInitialForms(G≺, u)
M ← markedGB(inwG, MonomialOrder = T ) ▷ convert inω(G) to a marked GB w.r.t ≺′

for m in M do
r ← markedGBNormalForm(G≺, p) ▷ compute mG≺ of r
m ← m - r ▷ subtract normal forms from each m ∈M

end for

G ← markedGBReduce(M) ▷ reduce and keep markings of M
return G

Despite the similarities of this procedure with the standard Lift from section 2 (cf. Algo-
rithm 3), there are a couple of important subtleties which must be noted. Firstly, the subroutines
“markedGBNormalForm” and “markedGBReduce” are necessary: these are similar to their
conventional counterparts, but differ in that they only require a marked Gröbner basis G as input.
They do not require an explicit description of the monomial order with respect to which G is a
Gröbner basis. This is crucial in our setting because the intermediate weight vectors (and therefore
the intermediate refinement monomial orders) encountered along the generic path are not known.
Pseudocode for these subroutines can be found in Section A.4.

Proposition 5.10. Algorithm 10 “GenericLift” is correct in the sense that its output G is a
marked Gröbner basis of I with respect to the refinement monomial order (≺′)ω.

Proof. As inω(G≺) is ω-homogeneous, its reduced Gröbner basisM with respect to ≺′ is equal to that
with respect to the refinement order (≺′)ω. It follows that output of Algorithm 10 is set-theoretically
equal to that of Algorithm 3. In both algorithms, the markings of the lifted basis are those of their
respective “M”s. As in≺′

ω
(mi) = in≺′(mi) for all i, the markings of the two bases are also equal.

Thus (by correctness of Algorithm 3), the output of Algorithm 10 is indeed a marked Gröbner basis of
I with respect to (≺′)ω, obtained by applying markedGBReduce to the inclusion minimal Gröbner
basis.

5.3 The generic Gröbner walk

Using the subroutines defined in the previous two sections, we can now describe the generic Gröbner
walk as follows:

51



Algorithm 11 GenericWalk(G≺, S, T )

Input: G≺ ▷ the marked Gröbner basis of I w.r.t ≺
S
T ▷ Matrices for the starting and target orders with entries in Qn≥0

Output: G≺′ ▷ the marked Gröbner basis of I w.r.t ≺′

G ← G≺
v ← GetNextV(G, −∞, S, T ) ▷ Initialize
while v ̸= +∞ do

G ← GenericLift(G, v, S, T )
v ← GetNextV(G, v, S, T )

end while
return G

In the expressions “v = ±∞”, +∞ and −∞ are placeholders for integer vectors which are strictly
greater/smaller than all bounding vectors BV(I) ∩ RS,T w.r.t the facet preorder <F and are solely
relevant for the initialization/termination of the algorithm. We also note that the matrices S and T
do not get updated as we pass from one Gröbner basis to the next as the facet preorder is dependent
solely on the initial inputs ≺ and ≺′.

Proposition 5.11. Algorithm 11 GenericWalk is correct and terminates after finitely many steps.

Proof. The correctness of the lifting step follows from the correctness of the standard lifting step
(Algorithm 3) and Proposition 5.10. It remains to show that the algorithm is non-stationary and
terminates after finitely many steps.
Every call of “GetNextV” returns a vector which is strictly greater than the input vector w.r.t <F .
If this vector is +∞, then this is the signal that we are done, and the output of the generic walk is
G≺′ by Lemma 5.8. If the output of GetNextV(G, v, S, T ) is some ṽ ̸= +∞, then this indicates
that we are not yet done. However, due to the claim (5.1) from Theorem 5.7, we have that u < ũ. In
particular the point l(ũ) along the perturbed line segment l is closer to τε than l(u), implying that
the algorithm is non-stationary. Termination after finitely many steps follows similarly to the proof
of Theorem 2.12; the line segment l intersects only finitely many Gröbner cones.

5.4 An example

To see GenericWalk in action, we perform the same computation from Section 3.3, this time using
Algorithm 11. Let

I = ⟨x2 + yz, xy + z2⟩
and

G≺ = {x2 + yz, xy + z2, xz2 − y2z, y3z + z4}.
Our task is to convert G≺ to the reduced Gröbner basis G≺′ basis w.r.t the monomial order

≺′= glex(1,3,0), using Algorithm 11.
Recall that the monomial order matrix for ≺= lex can be taken to be S := I3, and ≺′ has

monomial order matrix

T :=

1 3 0
1 1 1
1 0 0

 .

We set G := G≺ Our first task is to compute GetNextV(G≺, −∞, S, T ). To do this, first
compute the path region. This is
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RS,T =

{
x ∈ R3 : x >S 0 and x <T 0

}

=

{
x ∈ R3 :

x1x2
x3

 >lex

0
0
0

 and

 x1 + 3x2
x1 + x2 + x3

x1

 <lex

0
0
0

}
.

The bounding vectors of G are

BV(G) =

{ 0
3
−3

 ,

 1
−2
1

 ,

 1
1
−2

 ,

 2
−1
−1

}
=: {v1, v2, v3, v4}.

Out of these, only the v2 and v4 lie in RS,T , therefore GetNextV(G, −∞, S, T ) returns the
vector out of these which is minimal w.r.t the facet preorder. To determine this we first compute

Tv2v
t
4 =

−10 5 5
0 0 0
2 −1 −1

 and Tv4v
t
2 =

−2 2 −1
0 0 0
2 −4 2

 .

Comparing these matrices w.r.t <̃S equates to comparing their rows w.r.t <lex.
As (−10, 5, , 5) <lex (−2, 2, 1), we have that Tv2v

t
4<̃STv4v

t
2, and therefore v2 <F v4. So

GetNextV(G, −∞, S, T ) = v2 =: v
Calling “GenericInitialForms(G, v)” returns the Gröbner basis of initial forms inω(G) by

calculating, for each g ∈ G, which terms of g have exponent vectors β ∈ supp(g) fulfilling
α− β ∈ posHull(v). Doing this yields the set

inω(G) = {x2, xyxz2 − y2z, y3z}.

In the lifting step, inω(G) is converted to the reduced Gröbner basis of inω(I) w.r.t ≺′. This is

M := {x2, xy, y2z − xz2}.

M is subsequently lifted to a Gröbner basis of I by subtracting the normal form mG from each
m ∈M :

Gnew = {x2 + yz, xy + z2, y2z − xz2}.

We keep the markings of M , and note that Gnew is already reduced, as no term of any of the
polynomials is divisible by any of the marked terms.

As v ̸= +∞, we update by setting G := Gnew and reiterate. We have

BV(G) =

{ 2
−1
−1

 ,

 1
1
−2

 ,

−12
−1

}
= {ṽ1, ṽ2, ṽ3}.

Of these, only ṽ1 lies in the region RS,T . GetNextV(G, v, S, T ) checks if ṽ1 is greater than our
previous bounding vector v = (1 − 2, 1) w.r.t <F : indeed (similarly to before) T ṽ1v

t >lex Tvṽ1
t,

therefore ṽ1 >F v, so GetNextV(G, v, S, T ) = ṽ1 =: v ̸=∞, so we perform another conversion.

The new set of initial forms is

inω(G) := {x2 + yz, xy, y2z},

which is converted to
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M := {yz + x2, xy, x3}

and lifted to
Gnew := {yz + x2, xy + z2, x3 − z3},

which is also reduced. (Again, the markings of Gnew are those of M .)
Now we have

BV(Gnew) =

{−21
1

 ,

 1
1
−2

 ,

 3
0
−3

}
,

and observe that BV(Gnew)∩RS,T = ∅ which (by Lemma 5.8) implies that we are already in the
desired cone. Indeed, GetNextV(Gnew, v, S, T ) = +∞ and the algorithm terminates, outputting
Gnew = G≺′ .

Upon comparing these computations with those from the same conversion using
StandardGroebnerWalk (see Section 3.3), we see that the intermediate Gröbner bases computa-
tions are exactly same in both algorithms. The advantages of GenericWalk over
StandardGroebnerWalk are twofold; firstly, no weight vectors are explicitly computed. Secondly,
it is guaranteed that the perturbed line segment intersects the boundaries of cones in facets, thus
minimizing the length of the polynomials on which Buchberger’s algorithm is called due to Proposi-
tion 4.3.

We conclude this section by revisiting the running example (40) from Section 4, adding runtimes
for the generic Gröbner walk:

Algorithm number of maximal maximal time
conversions | supp(inω(g))| coeff. length (s., approx)

StandardGroebnerWalk 17 44 130 11.01
dPerturbedWalk 56 2 1147 6.08
hPerturbedWalk 53 2 1147 2.92
GenericWalk 50 3 1147 2.31

Table 2: A comparison of the Gröbner walk algorithms on the conversion from (40). The perturbed
walks were executed with perturbation factor d = 64, and both yielded the correct basis. The
perturbed and generic walks constitute an improvement on StandardGroebnerWalk by avoiding
long initial forms, in particular at the last conversion.
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6 Experiments in Macaulay2

In this section we provide a survey of problems involving Gröbner basis computation for which
the Gröbner walk algorithms may be particularly well-suited. All of the tests in this section were
performed in Macaulay2 on a machine with an intel i5-5300U processor with 16MB cache and 8GB of
DDR3 RAM running Macaulay2 version 1.22 and Linux Mint 19.0.3. We compare the built-in function
gb (which adopts a series of heuristics and optimizations for the handling of S-pairs [RS12]) with the
implementations of StandardGroebnerWalk and GenericWalk already present in Macaulay2

as part of the GroebnerWalk package2. For the FGLM algorithm (cf. [Fau+93]) we use the fglm

method from the package “FGLM”. We compare our results with a version of hPerturbedWalk
which was implemented by us, based on the source code of the GroebnerWalk package. We also wrote
the two methods verboseWalk and verbosegenericWalk, which execute the standard and generic
walks, outputting extra information about the size of the polynomials and coefficients encountered.
The source code for these methods and for the experiments can be found in the modifiedGWalk

repository ([Now24]).

6.1 Lexicographic Gröbner bases

One of the main motivating factors behind the introduction of Gröbner bases [Buc06] was the solution
of systems of polynomial equations. Given a set of multivariate polynomials f1, ..., fr ∈ Q[x1, .., xn]
we would like to determine its affine variety, defined as

V({f1, ..., fs}) :=
{
x ∈ Cn : fi(x) = 0 for all i ∈ {1, ..., r}

}
.

A common technique for doing this is elimination, which may be seen as a generalization of the
Gaussian elimination/triangulation to the non-linear case. The goal here is to obtain a generating
set of the ideal I := ⟨f1, ..., fs⟩ which is “well-behaved” in the sense that the elements of the Gröbner
basis have terms where the variables are isolated in such a way that the system may be solved
by backwards elimination. The elimination theorem states that this is precisely the case for the
lexicographic Gröbner basis with x1 ≻ x2 ≻ ... ≻ xn.

Theorem 6.1 (Elimination Theorem).
Let I ◁ Q[x1, ..., xn] be an ideal and Glex be a Gröbner basis of I with respect to the lexicographic
ordering with x1 ≻ x2 ≻ ... ≻ xn. For every 0 ≤ l ≤ n, the set

Gl := G ∩Q[xl+1, ..., xn]

is a Gröbner basis of the l-th elimination ideal

Il := I ∩Q[xl+1, ..., xn].

Proof. Consult [CLO15, pg. 121].

Example 6.2. The cyclic 3-roots problem consists of solving the following system of polynomials:
f1(x, y, z) = x+ y + z

f2(x, y, z) = xy + yz + zx, xyz − 1

f3(x, y, z) = xyz − 1

The lexicographic Gröbner basis of I = ⟨f1, f2, f3, ⟩ ◁Q[x, y, z] is

Glex =
{
x+ y + z, y2 + yz + z2, z3 − 1

}
=: {g1, g2, g3}.

2The source code for this package may be found here.

55

https://macaulay2.com/doc/Macaulay2/share/Macaulay2/GroebnerWalk.m2


The system may now be solved by backwards substitution comparable to the linear case. The condi-
tion g3 = 0 implies that any solution (x, y, z) ∈ V(I) fulfills z3 − 1. Substituting this in g2 = 0 and
subsequently g1 = 0, we obtain that there are 6 complex solutions to the system, corresponding to
the permutations of the third roots of unity.

Example 6.2 may be generalized in the intuitive way to the cyclic n-roots problem in Q[x1, ..., xn]
(cf. [BF91]), which is commonly used in the benchmarking of polynomial solvers.
Systems of polynomial equations with only isolated solutions are also referred to as zero-dimensional ;
this is because the variety of the corresponding ideal is a finite set of points. For the solution of such
systems, a multitude of “non-Gröbner basis” approaches have been developed: most notably numer-
ical methods such as homotopy continuation ([BT18]). Here, we choose to compare the standard,
perturbed and generic walks only with the Gröbner basis methods gb and FGLM. Our results are
presented below.

System Runtime in Macaulay2 (s., approx.)

gb Standard walk Perturbed walk Generic walk FGLM

Q Fp Q Fp Q Fp Q Fp Q Fp
cyclic5 0.06 0.06 0.09 0.049 0.25 0.26 0.59 0.71 0.19 0.20
cyclic6 3.69 6 · 10−5 2.44 0.61 2.87 1.86 11.34 12.67 1.24 0.71
chap4 81.02 0.17 11.01 0.39 2.92 1.01 2.31 0.85 n.a n.a.
katsura6 m.o m.o. m.o. m.o. 16.5 4.56 37.83 45.01 26.80 0.614

Table 3: The performance of the various Gröbner walk algorithms in a series of lexicographic con-
version problems over the fields Q and Fp, for p = 32003. “m.o.” stands for “memory overload”,
meaning that the algorithm did not terminate. More information on the polynomial systems may be
found in Appendix D.

Firstly, we observe that the performance of the standard walk is generally better than the other
variants of the walk. Exceptions occur in chap4 and katsura6. In chap4 (the running example (40)
from sections 4 and 5) this is because of the large coefficient swell (cf. section 5.4). In katsura6 the
second while loop of StandardGroebnerWalk is tantamount to applying Buchberger’s algorithm
to the ideal I: thus, the algorithm hangs for the same reasons that gb does.
Compared to gb, the performance of StandardGroebnerWalk was generally better. Where ap-
plicable, FGLM was the fastest method. However, it may only be called on zero-dimensional ideals.
Passing to the finite field Fp generally sped up computations: the most drastic improvement is seen
in chap4, where the large coefficients of the polynomials encountered in the intermediate bases no
longer constitute a bottleneck.

6.2 Implicitization of parametric surfaces

Consider a surface in R3 parametrized by polynomial equations in two variables:

S ≡


x =f1(t1, t2)

y =f2(t1, t2)

z =f3(t1, t2)

where f1, f2, f3 ∈ Q[t1, t2] , t1, t2 ∈ R.

The task of implicitization is to express S solely in terms of zero sets of polynomials in Q[x, y, z].
More specifically, we would like to determine the (set-theoretically) smallest ideal I ◁ Q[x, y, z] such
that S ⊆ V(I).

56



Over infinite fields, this task can be reformulated as an elimination problem:

Theorem 6.3 (Implicitization theorem).
Let

F : R2 → R3 , (t1, t2) 7→ (f1(t1, t2), f2(t1, t2), f3(t1, t2))

be a parametrization of a surface S ⊂ Rn, and

I := ⟨x− f1(t1, t2), y − f2(t1, t2), z − f3(t1, t2)⟩ ◁ R[t1, t2, x, y, z]. (58)

The variety V(Ix,y,z) of the elimination ideal

Ix,y,z := I ∩ R[x, y, z]

is the smallest variety in R3 containing S.

Proof. consult [CLO15, pg. 134].

The theorem implies that one can implicitize a surface S given in parametric form by computing
a reduced Gröbner basis G of the ideal I defined in (58) w.r.t a lexicographic term ordering with
t1 ≻ t2 ≻ x ≻ y ≻ z. By the elimination theorem, the polynomials Gx,y,z := G ∩ R[x, y, z] are a
minimal implicit representation of the surface.

Example 6.4. Let S ⊂ R3 be the surface parametrized by

F : R2 → R3 , (t1, t2) 7→ (t1t2, t
2
1, t

2
2).

To calculate its implicit representation, we compute the reduced Gröbner basis of the ideal

I = ⟨x− t1t2, y − t21, z − t22⟩

with respect to the lexicographic ordering with t1 ≻ t2 ≻ x ≻ y ≻ z. This is

G =

{
x2 − yz, zu− xv, xu− yv, v2 − z, uv − x, u2 − y

}
,

where only the polynomial in bold lies in Q[x, y, z]. Thus, the variety V(⟨x2 − yz⟩) is the smallest
variety containing S.

Figure 7: The surface V(⟨x2 − yz⟩) from Example 6.4 in R3

57



Implicitization is an application for which the Gröbner walk is especially well-suited. Its perfor-
mance for the types of computations involved is consistently better than Buchberger’s algorithm, and
the paper in which the deterministically perturbed Gröbner walk was introduced ([Tra00]) mentioned
implicitization as the primary application. Furthermore, in this setting the ideals upon which the
computations are being performed are always of positive dimension; because of this, FGLM is not
applicable. An overview of the performance of the Gröbner walk and its variants in Macaulay2 is
presented below:

Runtime in Macaulauy2 (s., approx.)

System gb Standard walk Perturbed walk Generic walk

Q Fp Q Fp Q Fp Q Fp
newellp1 52.2 1.81 24.1 3.89 18.02 9.27 47.1 18.63
newellp4 0.02 0.03 0.2 0.12 0.37 0.12 0.24 0.21
newellp25 m.o 8.01 72.04 9.37 132.9 28.36 m.o 59.16
agk4 5.94 0.34 3.19 0.94 6.86 2.49 6.55 4.61
agk8 51.00 0.92 9.2 2.14 15.86 6.51 80 21.64

Table 4: The performance of the various Gröbner walk algorithms in a series of implicitization
problems with coefficients in Q and Fp with p = 32003. “m.o” stands for memory overload, meaning
that the algorithm did not terminate.

We observe that the performance of StandardGroebnerWalk is consistently better than that
of gb over Q. Although passing to Fp sped up computations, upon doing this gb was again the
fastest method. This suggests that the computational bottleneck in these examples is coefficient
swell. On the other hand, the perturbed and generic walks did not perform better than the standard
walk, implying that the intermediate conversions on these examples are not significantly faster when
executed on facets.

6.3 Integer programming and toric ideals

Let a1, ..., an, b ∈ N and consider the problem of determining whether the equation

x1a1 + x2a2 + ...+ xnan = b

has a non-negative integer solution x = (x1, ..., xn) ∈ Nn. This may be solved by the following
linear program:

Minimize t ∈ N , subject to t+ x1a1 + x2a2 + ...+ xnan ≤ b and t, x1, ..., xn ≥ 0. (59)

Using standard algebraic methods, this linear program can be solved using Gröbner bases.

Proposition 6.5. Let b, a1, ..., an ∈ N. We define the corresponding ideal

I := ⟨x1 − ta1 , x2 − ta2 , ..., xn − tan⟩ ◁Q[t, x1, ..., xn]. (60)

A solution to (59) is given by the exponent vector of the monomial

tb
I,≺

, (61)

where ≺ is any ordering such that t ≻ x1 ≻ ... ≻ xn. In particular, the problem has an optimal
solution if the variable t does not appear in (61).

Proof. Consult [Stu95, page 43].
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In some settings (for example in the coin change problem), it may be desirable minimize the total
entries of the solution

∑
|xi|. This can be done by ordering the ‘ai’s from largest to smallest and

computing a graded lexicographic Gröbner basis.

Example 6.6. Let a1 = 5, a2 = 12 and a3 = 20. We wish to solve the linear program in (59) with
b = 43. The corresponding toric ideal is

I = ⟨x1 − t5, x2 − t12, x3 − t20⟩. (62)

We compute a marked Gröbner basis of IA w.r.t any monomial order ≺ which prioritizes t over xi
(for example, the lexicographic ordering lext≻x1≻x2≻x3

). This is

G≺ =
{
x41−x3, x52−x33, tx23−x1x32, tx22−x1x3, tx31x3−x32, t2x3−x21x2, t2x21−x2, t3x2−x31, t5−x1

}
The normal form of the monomial tb = t43 w.r.t G is tx21x2x3 and indeed

43 = 1 + 2 · 5 + 1 · 12 + 1 · 20 = 1 + 2 · a1 + 1 · a2 + 1 · a3.

According to [Fuk+07] the generic Gröbner walk constitutes a significant improvement on Buch-
berger’s algorithm for conversions of this type. Using Macaulay2, we were unable to replicate the
results which they report in section 6 ([Fuk+07, pg.14]) on their set of knapsack problems, which
originally come from [AL04]. In our experiments, the generic Gröbner walk did not terminate in less
than 10,000 seconds in any of their “cuww” examples. Because of this, we decided to instead perform
experiments on smaller ideals of the form (62): we chose n = 5, and random ai between 1 and 104.

System Timings in Macaulay2 (s., approx.)

|Gglex| gb Buchberger Standard walk Generic walk

randomknap1 215 0.16 483.15 3.28 5.31
randomknap2 251 0.67 > 10, 000 2.24 4.56
randomknap3 161 0.055 5483.41 1.27 1.81
randomknap4 271 0.77 55.72 6.15 10.07
randomknap5 230 0.52 2053.95 16.21 25.11

Table 5: The performance of the various Gröbner basis algorithms in knapsack problems with random
ai. For Buchberger’s algorithm we used the method gfanBuchberger from the “gfanInterface”
package.

While the results confirm that Gröbner walk methods are a significant improvement on a naive
implementation of Buchberger’s algorithm, using gb is clearly the method of choice. In this case, this
is because the underlying ideal is both toric and homogeneous with respect to the weight vector

ω =

(
n∏
i=1

ai ,
n∏
i=2

ai , . . . ,
n∏
i̸=k

ai , . . . ,
n−1∏
i=1

ai

)
, (63)

where the variables are ordered as t, x1, x2, ..., xn.

Further analysis of the intermediate computations with the verboseWalk methods explain the
inferior performance of the generic walk. While the generic walk always entailed more intermediate
conversions, there is no advantage over the standard Gröbner walk in this particular setting: in
both methods, all of the initial forms encountered are either monomials or binomials, meaning. Our
implementation of hPerturbedWalk was not applicable on these ideals in Macaulay2 as the degree
of the polynomials is too high. However, we do not expect the perturbed walk to perform better than
the standard walk for the reasons we have just stated.
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The ideals of the form (62) belong to a class of ideal which are ubiquitous in applications: toric
ideals. Specialized Gröbner basis methods for these ideals (for example those based on [CT91])
exist and are integrated in the gb function by default. To compare the algorithms on toric ideals,
we generated random matrices with 8 columns and 4 rows and entries up to 16, and constructed the
corresponding toric ideal with the functions toricMarkov and toBinomial. We then used the methods
gb, StandardGroebnerWalk and GenericWalk and gfanBuchberger to compute lexicographic
Gröbner bases.

System Timings in Macaulay2 (s., approx.)

gb Buchberger Standard walk Generic walk

toric1 0.004 0.35 20.67 51.63
toric2 1.71 16.7 87.06 659.98
toric3 0.09 0.59 55.32 89.07
toric4 0.06 0.27 16.13 28.18
toric5 0.92 0.24 11.78 28.92

Table 6: The performance of the various Gröbner basis algorithms for the computation of lexicographic
bases of toric ideals with 4 generators over 8 variables.

The performance of gb and the Gröbner walk algorithms is comparable to the knapsack case.
The dramatic improvement of Buchberger’s algorithm may be attributed to the lower degree of the
polynomials encountered. While the Gröbner walk approach is clearly not the method of choice for
toric ideals for computing a single Gröbner basis, it may still be of interest if one wants information
about the intermediate bases and/or more generally, the Gröbner fan. In the knapsack case, each
intermediate Gröbner basis computation corresponds to solving the linear program (59) with some
other b, meaning that it may be beneficial to cache them.

We conclude with some heuristics for the use of Gröbner basis algorithms in Macaulay2 based on
our observations:

• For computing lexicographic bases of 0-dimensional ideals, FGLM is the preferred method.

• For computing lexicographic bases of ideals of positive dimension, the standard or generic walk
may perform well on ideals where the gb method hangs.

• StandardGroebnerWalk is the method of choice for Gröbner basis approaches to problems
of implicitization.

• For toric ideals, gb and other specialized algorithms are the methods of choice.

• Any benefit of the perturbed or generic walks over the StandardGroebnerWalk is highly
situational. The theoretical advantages of the former methods are rarely reflected in perfor-
mance.
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7 Implementation in OSCAR: The GroebnerWalk package

We implemented the standard, generic and perturbed Gröbner walks in the OSCAR computer algebra
system ([24]). In its current state, the code is a stand-alone julia package with dependency on OSCAR

called GroebnerWalk, and it was developed in collaboration with Kamillo Ferry. Special thanks go
to Jordi Welp (University of Oldenburg), who laid the groundwork of the code as part of his master’s
thesis. It is our hope that the code will be included in an upcoming stable version of OSCAR as
an option for the function groebner basis. In this section, we provide a brief description of the
functionality of the code, as well as some preliminary benchmark results. The source code (including
the examples mentioned in section 7.2) may be found here.

7.1 Functionality

To demonstrate the functionality of GroebnerWalk we revisit the ideal (35) from Section 3. Let

I = ⟨x2 + yz, xy + z2⟩ ◁Q[x, y, z],

and suppose we are tasked with computing a lexicographic Gröbner basis. The entire functionality
of the package is accessed via the groebner walk function, as demonstrated below.

using Oscar, GroebnerWalk # load necessary packages

R, (x,y,z) = polynomial_ring(QQ, ["x", "y", "z"]) # define the ring...

I = ideal([x^2 + y*z, x*y + z^2]) # ...and the ideal

groebner_walk(I, lex(R)) # compute the Groebner basis

By default, the starting basis is the reduced Gröbner basis w.r.t the graded reverse lexicographic
order. If we would like to do a Gröbner walk with a different starting order, this can be specified by
adding a third argument. Furthermore, the intermediate weight vectors computed may be retrieved
using set verbosity level. We demonstrate these features by executing the walk described in
Section 3.3:

set_verbosity_level(:groebner_walk, 1) # set verbosity level

start_order = lex(R) # specify starting...

target_order = matrix_ordering(R, [1 3 0; 1 1 1; 1 0 0 ]) # ...and target orders

groebner_walk(I, target_order, start_order) # walk from start to target order

Running this gives the following output:

Results for standard_walk

Crossed Cones in:

ZZRingElem[1, 0, 0]

ZZRingElem[2, 1, 0]

ZZRingElem[1, 2, 0]

Cones crossed: 3

Groebner basis with elements

1 -> y*z + x^2

2 -> x^3 - z^3

3 -> x*y + z^2

with respect to the ordering

matrix_ordering([x, y, z], [1 3 0; 1 1 1; 1 0 0])
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The selection of the algorithm used is done by an (optional) keyword argument algorithm=:.
At time of writing, the three options available are standard, generic and perturbed. Calling
groebner walk(I, target order, start order, algorithm =:generic) yields the following out-
put:

Results for generic_walk

Facets crossed for:

ZZRingElem[1, -2, 1]

ZZRingElem[2, -1, -1]

Cones crossed: 2

Groebner basis with elements

1 -> y*z + x^2

2 -> x^3 - z^3

3 -> x*y + z^2

with respect to the ordering

matrix_ordering([x, y, z], [1 3 0; 1 1 1; 1 0 0])

7.2 Preliminary benchmarks

We executed benchmarks on selected computational tasks already used for the experiments in Sec-
tion 6. We ran the comparisions on the same machine described in Section 6 running Linux Mint
19.03, Julia 1.10.4 and OSCAR 1.0.3. The results are presented below:

Table 7: The results obtained for several systems from section 6, taken over Q and Fp with p = 32003.
The entry “m.o” is present when the algorithm did not terminate due to memory overload

Runtime in OSCAR (s., approx)

Ideal groebner basis Standard walk Generic walk

Q Fp Q Fp Q Fp
cyclic5 0.07 0.05 0.08 0.07 0.91 0.879
cyclic6 5928.51 0.24 0.93 0.61 17.85 28.41

agk4 1407.76 4 · 10−5 23.79 5.33 214.75 201.69
newellp1 2081.76 0.40 25.51 17.33 6042.97 4597.38

randomknap4 0.16 0.14 97.30 77.38 19.98 49.81
chap4 m.o 2.78 1.49 3.46 59.60 48.96

The results show that in many cases the standard Gröbner walk constitutes a significant improve-
ment on the state of the art for ideals defined over Q. This, combined with the fact, at the time of
writing, not all widely-used Gröbner basis algorithms have been fully implemented in OSCAR3, means
that our implementation of the standard walk may be preferable to groebner basis in a variety of
contexts.

Comparing the computation timings with those from the Macaulay2 experiments from the previ-
ous chapter, we notice that the computations here are generally slower, sometimes by several orders of
magnitude. We attribute this to the fact that groebner basis (which uses methods from Singular)
contains fewer of the heuristics present in the gb method in Macaulay2. Furthermore, it is a known
issue that the reduction of polynomials with the multivariate division algorithm is excessively memory-
intensive in OSCAR. This would help to explain to the comparatively poor performance of the generic

3Faugere’s F4 algorithm [Fau99] may only be called over finite fields, whereas the F5 algorithm is as of yet not
implemented. The “Hilbert-driven” Buchberger algorithm [Sim14] threw an error in our larger examples for reasons
we have yet to investigate.
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walk, in which many more conversions/reductions generally occur.

Table 8: Side-by-side comparison of the default Gröbner basis methods and the standard and generic
walks in OSCAR and Macaulay2. All of these computations were carried out over Q. “m.o” stands for
memory overload.

Runtime (s., approx)

Ideal groebner basis / gb Standard walk Generic walk

OSCAR M2 OSCAR M2 OSCAR M2

cyclic5 0.07 0.06 0.08 0.09 0.91 0.59
cyclic6 5928.51 3.69 0.93 2.44 17.85 11.34

agk4 1407.76 5.94 23.79 3.19 214.75 0.24
newellp1 2081.76 52.2 25.51 24.1 6042.97 47.10

randomknap4 0.16 0.77 97.30 6.15 19.98 10.07
chap4 m.o 81.02 1.49 11.01 59.60 2.31

7.3 Outlook

We plan to perform further tests in the upcoming weeks to investigate the bottlenecks encountered
by groebner basis and help interpret our results. The GroebnerWalk package remains a work in
progress. We intend to optimize our code for more efficient interactions with both the Singular back-
end, as well as the subroutines for the computation and lifting of initial forms already implemented
in OSCAR as part of the groebner fan method.
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8 Concluding remarks

We started by providing a comprehensive resource for the theory behind the Gröbner walk as in-
troduced by [CKM97], as well as the variations proposed in [Tra00] and [Fuk+07]. This includes
a formalization of these algorithms (Algorithm 1, Algorithm 8, Algorithm 11) and rigorous proofs
of correctness (Theorem 2.12, Theorem 2.9, Theorem 5.7). The formulation and proof of these re-
sults, as well as those of Proposition 4.1 and Lemma 2.8, and all of the examples provided are novel
contributions, so feedback and corrections on these parts are especially welcome.

On the implementation side, the experiments from Section 6 and the OSCAR implementation are
novel contributions. We made efforts to ensure replicability, and invite the reader to conduct the
experiments themselves; to this end, we would welcome any alternative results and/or interpretations
of our data. The decision to conduct our experiments primarily in Macaulay2 instead of OSCAR was a
practical one: many of our heavier examples in Section 6 did not terminate reasonable time in OSCAR

using any Gröbner basis conversion algorithm. We are currently investigating the reasons for this.

In OSCAR, our implementation of the standard Gröbner walk appears to be an improvement on
the state of the art. The GroebnerWalk package has been staged for inclusion into experimental.
We hope to obtain suggestions and feedback at the upcoming MEGA 2024 conference in Leipzig,
where we will hold a computer presentation presenting the package. A jupyter notebook containing
a 4-variable example (with a corresponding 3-dimensional visualization using polymake) is planned
for the presentation, and will be made available at the repository ([Now24]) once completed. We also
plan to submit a short paper about the package to JSAG.

Avenues for further work include:

• Implementation and experiments involving other variants of the Gröbner walk such as the
“fractal” ([AGK97]) and “parametric” walks ([HDB17]).

• Discussion of the relevance of the Gröbner walk for computing Gröbner fans ([FJT07]) and in
the tropical setting ([Jen07, Chapter 7]).

• A further investigation of the computational bottlenecks encountered in the generic walk, par-
ticularly in OSCAR.

Questions, corrections, and comments may be sent to nowell@tu-berlin.de.
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A Ideals and Gröbner bases

We provide an overview of the theory on ideals and Gröbner bases required to introduce the Gröbner
walk algorithm. For proofs and more context, we refer to chapter 2 of the book ”Ideals, varieties
and algorithms” ([CLO15], pg. 49). Throughout this section, K denotes a field and K[x1, ..., xn]
is the polynomial ring in n variables with coefficients over K. We denote the set of all monomials
in K[x1, ..., xn] by Monn(x). Although the results below hold for arbitrary fields unless otherwise
stated, we are most interested in the case K = Q.

A.1 Ideals

Definition A.1. An ideal I in K[x1, ..., xn] is a subset of K[x1, . . . , xn] fulfilling the following three
conditions

(i) I contains the zero polynomial: 0 ∈ I.

(ii) I is closed under addition: f, g ∈ I =⇒ f + g ∈ I.

(iii) I is closed under multiplication with any element of K[x1, ..., xn], i.e.

s∑
i=1

fihi ∈ I for any f1, ..., fs ∈ I , h1, ..., hs ∈ K[x1, ..., xn].

If I ⊂ K[x1, ..., xn] is an ideal, we write I ◁ K[x1, ..., xn]. Notable examples of ideals include the
ring itself I = K[x1, ..., xn] the zero ideal I = {0}, kernels of ring homomorphisms and vanishing
ideals of affine varieties.

Definition A.2. Let F ⊂ K[x1, ..., xn].

• The set

⟨F ⟩ :=
{ s∑
i=1

fihi : fi ∈ F , hi ∈ K[x1, ..., xn] , s ∈ N
}

is called the ideal generated by F . It is the smallest ideal containing F .

• For an ideal I, we call a set F such that ⟨F ⟩ = I a generating set (or basis) of I.

• We call I a monomial ideal if it has a generating set consisting solely of monomials.

The following lemma is instrumental for the proof of several classical results.

Lemma A.3. Let I = ⟨xα , α ∈ A⟩ be a monomial ideal (where A ⊂ Nn). Then for any monomial
xβ ∈ Monn(x) the following holds:

xβ ∈ I ⇐⇒ xα
′
|xβ for some α′ ∈ A

⇐⇒ There exist vectors α′ ∈ A , γ ∈ Nn such that xβ = xα
′
xγ = xα

′+γ .

Proof. Consult [CLO15, pg. 70].

For example, Lemma A.3 is an ingredient in the proof of the Hilbert basis theorem:

Theorem A.4. (Hilbert basis theorem) Any ideal I◁K[x1, ..., xn] has a finite generating set {f1, ..., fs}.

The Theorem can be proven either by deriving it as an immediate corollary of the claim that
K[x1, ..., xn] is a Noetherian ring, or by introducing a multivariate division algorithm and using this
in combination with Lemma A.3.
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A.2 Monomial orders and the multivariate division algorithm

The multivariate division algorithm is crucial in solving systems of polynomial equations. To introduce
it, we first need to introduce a special kind of ordering relation on the set of all monomials in n
variables Monn(x)

Definition A.5. A monomial order is a relation ≺ on the set Monn(x) with the following three
properties:

(i) ≺ is a strict total ordering, i.e.

for all α, β ∈ Nn with α ̸= β, either xβ ≺ xα or xα ≺ xβ .

(ii) ≺ is admissible, i.e.

for all α, β, γ ∈ Nn : xβ ≺ xα =⇒ xβ+γ ≺ xα+γ

(iii) ≺ is a well-order, i.e.

for any non-empty collection of monomials M ⊂ Monn(x), there exists an xα ∈M
such that xα ≺ xβ for all xβ ∈M .

Example A.6. Some well-known examples of monomial orders are:

• the lexicographic order lex:

xβ ≺lex xα ⇐⇒ the leftmost non-zero entry of α− β is positive.

• the graded reverse lexicographic order grevlex:

xβ ≺grevlex xα ⇐⇒
n∑
i=1

βi <

n∑
i=1

αi or

n∑
i=1

βi =

n∑
i=1

αi and the rightmost non-zero entry of α− β is negative.

• the refinement monomial order of a weight vector ω ∈ Qn≥0 w.r.t a given monomial order
≺. This is the relation ≺ω defined as

xβ ≺ω xα :⇐⇒ ⟨ω, β⟩ < ⟨ω, α⟩ or
(
⟨ω, β⟩ = ⟨ω, α⟩ and xβ ≺ xα

)
.

Refinement orders appear numerous times in the Gröbner walk algorithm. Therefore, we provide
a proof of the fact that they are indeed monomial orders. To do this, we first recall a helpful
characterization of the well-ordering property for admissible total orders.

Proposition A.7. If ≺ is an admissable total ordering on Monn(x) (i.e. a relation already fulfilling
(i) and (ii) from the Definition A.5), then the following holds:

≺ is a well-order ⇐⇒ 1 = x(0,...,0) ≺ xα for all α ∈ Nn \ {0}.

Proof. [CLO15] proves this as a corollary of Dickson’s lemma, which is the preliminary version of the
Hilbert basis theorem for monomial ideals (consult pg. 73).

Proposition A.8. Let ≺ be a monomial order on Monn(x) and ω ∈ Qn≥0. Then the following holds:

≺ω is a monomial order.
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Proof. We show that ≺ω has the properties (i) - (iii) of Definition A.5.
(i): Let α, β ∈ Nn, α ̸= β. Then either xα ≺ xβ or xβ ≺ xα hold (as ≺ is a total order).
Thus, either xα ≺ω xβ or xβ ≺ω xα, regardless of whether ⟨ω, α⟩ = ⟨ω, β⟩ holds or not.
(ii) follows from admissibility of ≺ together with the observation that

⟨ω, α⟩ < ⟨ω, β⟩ =⇒ ⟨ω, α+ γ⟩ < ⟨ω, β + γ⟩ for any α, β, γ ∈ Nn.

(iii) follows from Proposition A.7, as ω ∈ Qn≥0 implies ⟨ω, 0⟩ = 0 < ⟨ω, α⟩ and consequently

1 ≺ xα for all α ∈ Nn, α ̸= (0, ..., 0).

Once we have fixed a monomial order ≺, we may define leading terms/coefficients of a polynomial
in an analogous manner to the 1-variable case.

Definition A.9. Let ≺ be a monomial order, f ∈ K[x1, ..., xn], f ̸= 0. We may write the terms of
f in descending order w.r.t ≺. That is,

f = cα1
xα1 + cα2

xα2 + ...+ cαk
xαk

where cαi
∈ K \ {0} and xαi+1 ≺ xαi for all i.

• The leading term of f w.r.t ≺ is

LT≺(f) := cα1x
α1 .

• The initial monomial (or leading monomial) of f w.r.t ≺ is

in≺(f) := xα1 .

• The leading coefficient of f w.r.t ≺ is

LC≺(f) := cα1
.

These are all of the notions necessary to introduce the multivariate division algorithm.

Theorem A.10. Let ≺ be a monomial order on Monn(x), F = (f1, ..., fs) be an ordered set of
non-zero polynomials in K[x1, .., xn]. For each f ∈ K[x1, ..., xn] there exist polynomials
r, q1, ..., qs ∈ K[x1, ..., xn] such that the following three statements hold:

(i) f = q1f1 + q2f2 + ...+ qsfs + r.

(ii) Either r = 0 holds, or r ̸= 0 and no term of r is divisible by LT≺(fi) for all i ∈ {1, .., s}.

(iii) For all i, either in≺(qifi) = in≺(f) or in≺(qifi) ≺ in≺(f).

Proof. The proof is constructive: the polynomials qi and r are the quotients and remainder respec-
tively, obtained upon dividing f by F with the multivariate division algorithm. For a description of
this algorithm as well as a proof of the result we refer to [CLO15, pg.64].

It is clear that in the setting above, if r = 0 then f ∈ ⟨F ⟩. The converse doesn’t hold for
general generating sets of ⟨F ⟩ (Consult [CLO15, pg. 68] for an example of this.). This motivates the
introduction of a special kind of generating set: Gröbner bases.
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A.3 Gröbner bases

Definition A.11. Let ≺ be a monomial order.

• For a set F ⊂ K[x1, ..., xn], the initial ideal of F w.r.t ≺ is the ideal generated by the leading
monomials of elements of F :

in≺(I) := ⟨
{
in≺(f), where f ∈ F

}
⟩

• A finite set of polynomials G is called a Gröbner basis of an ideal I ◁ K[x1, ..., xn] w.r.t ≺, if

in≺(G) = in≺(I).

Every ideal I has a Gröbner basis w.r.t ≺; this follows constructively from the results in the
following section. Furthermore, Gröbner bases solve the ideal membership problem, i.e the task of
determining whether f ∈ I holds for some I ◁ K[x1, ..., xn], f ∈ K[x1, ..., xn]. We state this fact as a
modified version of Theorem A.10.

Proposition A.12. Let ≺ be a monomial order, I ◁ K[x1, ..., xn] be an ideal and G = {g1, ..., gs} be
a Gröbner basis of I w.r.t ≺. For any non-zero polynomial f ∈ K[x1, ..., xn] there exists a unique
r ∈ K[x1, ..., xn] such that:

(i) No term of r is divisible by any LT≺(gi), i ∈ {1, ..., r}.

(ii) There exists a g ∈ I such that f = g + r.

Proof. Consult [CLO15, pg.83].

Remark A.13. By Lemma A.3, condition (ii) is equivalent to requiring that no term of r lies in in≺(I).
Monomials not in in≺(I) are sometimes referred to as standard monomials. Using this terminology,
we can reformulate (ii) as the requirement that r be a (possibly empty) linear combination of standard
monomials.

Definition A.14. The polynomial r from the Proposition A.12 is called the residue (or alternatively,

the remainder or normal form) of f w.r.t I and ≺. We denote it by f
I,≺

.

When the underlying ideal is clear from context, we may simply write f
≺
.

Proposition A.12 states that f
I,≺

is unique, depends only on the monomial order ≺ and I, and is a
linear combination of standard monomials. Crucially, it is not dependent on the choice of generating
set of I. For any fixed ideal I and a monomial order ≺, there exist infinitely many Gröbner bases of
I. To introduce a notion of uniqueness, we turn our attention to Gröbner bases with extra properties.

Definition A.15. Let ≺ be a monomial order, I ◁ K[x1, ..., xn] an ideal.
A Gröbner basis G = {g1, ..., gr} is called reduced, if it has the following additional properties:

(i) G is minimal w.r.t inclusion, i.e.

in≺(G \ {gi}) ⊊ in≺(I) for all i ∈ {1, ..., r}.

(ii) G is monic, i.e.

LC≺(gi) = 1 for all i ∈ {1, ..., r}.

(iii) G is reduced, i.e.

For all i, j ∈ {1, ..., r} with i ̸= j, no term of gi is divisible by in≺(gj).
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An ideal may have the same reduced Gröbner basis w.r.t two distinct monomial orders ≺1 and
≺2. This can be the case even if in≺1

(I) ̸= in≺2
(I) For example, it is clear that {x+ y} is a reduced

Gröbner basis of the ideal I = ⟨x + y⟩ ◁ Q[x, y] w.r.t both lexx≻y and lexy≻x. This motivates the
notion of a marked Gröbner basis.

Definition A.16. We call a reduced Gröbner basis G = {g1, ..., gs} of an ideal I w.r.t ≺ with the
leading terms identified a marked Gröbner basis of I w.r.t ≺. Formally, it is defined as the set of
ordered pairs (gi, in≺(gi)). In our notation, we denote these bases by G≺ and identify the leading
monomial of each polynomial by underlining.

G≺ =

{
in≺(gi) +

∑
remaining terms of gi | i ∈ {1, ..., s}

}
.

(We note that due to the monicity property, we have LT≺(gi) = in≺(i) for all i ∈ {1, ..., s}.)

Proposition A.17. Let I ◁ K[x1, ..., xn] be an ideal. The set of all marked Gröbner bases is in 1-1
correspondence with the set of all initial ideals.

Proof. Let in≺(I) be an initial ideal of I w.r.t some monomial order ≺, and let

G =

{
in≺(gi) +

∑
remaining terms of gi | i ∈ {1, ..., s}

}
and

G̃ =

{
in≺(g̃j) +

∑
remaining terms of g̃j | j ∈ {1, ..., r}

}
be two marked Gröbner bases of I w.r.t ≺. That is,

in≺(I) = ⟨{in≺(g1), ..., in≺(gs)}⟩ = ⟨{in≺(g̃1), ...in≺(g̃r)⟩}

holds (by definition of a Gröbner basis) and G and G̃ both have the properties (i)-(iii) of Defini-
tion A.15. Our goal is to show G = G̃.
Lemma A.3 implies that for each i ∈ {1, ..., s}, in≺(gi) is divisible by in≺(g̃j) for some unique
j ∈ {1, ..., r} and, by the same argument, each in≺(g̃j) is divisible by some in≺(gi). (Uniqueness

follows from the fact that G and G̃ are both reduced. This implies r = s and, upon reordering, we
may assume that in≺(gi) = in≺(g̃i) holds for all i ∈ {1, ..., s}.
It remains to show that gi = g̃i holds for all i ∈ {1, ..., s}. Assuming gi ̸= g̃i for some i, then
gi − g̃i ∈ I \ {0}, and therefore xβ := in≺(gi − g̃i) ∈ in≺(I). By Lemma A.3, xβ is divisible by some
in≺(gi) and some in≺(g̃j). However, as in≺(gi − g̃i) is a term of either gi or g̃i this would contradict

the reducedness of G and G̃. Thus, gi = g̃i, completing the proof.

An immediate consequence of this result is that marked Gröbner bases are unique in the following
sense:

Corollary A.18. Let I ◁ K[x1, ..., xn] be a monomial ideal. If ≺ and ≺′ are monomial orders such
that in≺(I) = in≺′(I), then G≺ = G≺′ .

Finally, it is a well-known result that, given an ideal I ◁K[x1, ..., xn], there are only finitely many
initial ideals. (For a proof of this, consult [Stu95, pg.1]) Thus:

Corollary A.19. For some ideal I ◁ K[x1, ..., xn] The set of all marked Gröbner bases{
G≺ , ≺ is a monomial order

}
is finite.
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A.4 Computing Gröbner bases

Let F be an arbitrary finite generating set of an ideal I ◁K[x1, ..., xn] and ≺ be a monomial order. F
may be converted to a Gröbner basis of I w.r.t. ≺ using Buchberger’s Algorithm (cf. [Buc06]). This
algorithm works by computing and reducing so-called S-pairs of elements of F . We provide a general
description of the algorithm below.

Definition A.20. Let f, g ∈ K[x1, ..., xn] be two non-zero polynomials and ≺ be a monomial order.
We denote the least common multiple of the the monomials in≺(f) and in≺(g) by x

γ .
The S-pair of f and g with respect to ≺ is the polynomial

S(f, g) :=
xγ

LT≺(f)
· f − xγ

LT≺(g)
· g. (64)

For two polynomials f, g ∈ F in the generating set of I, the leading term of S(f, g) is by construc-
tion neither LT≺(f) nor LT≺(g). If this polynomial does not reduce to zero upon division by F , then
LT≺(S(f, g)) /∈ in≺(I). In this case, Buchberger’s algorithm adds this remainder to F . This process
is repeated until all S-pairs reduce to zero, which is precisely the case when F is a Gröbner basis w.r.t
≺. For a complete description of the algorithm and a proof of correctness, we refer to [CLO15, pg.
90].

The Gröbner basis G of I w.r.t ≺ computed with Buchberger’s algorithm is generally not reduced
in the sense of Definition A.15. However, this can be ensured by replacing each g ∈ G by the remainder
obtained by dividing g by G \ {g} w.r.t ≺, and scaling each of these polynomials by 1

LC≺(g) . Upon

identifying the leading terms of this new basis, we obtain the (unique) marked Gröbner basis G≺ (cf.
Definition A.16).

On the implementation level, the Generic walk (cf. Section 5) presents a new challenge, namely
the reduction of polynomials with respect to a marked Gröbner basis G without a description of
the monomial order with respect to which G is a Gröbner basis being given. This motivates the
introduction of the markedGB data type. These are sets consisting of pairs of polynomials and
monomials of the form (g, xα), where α ∈ supp(g). We refer to xα as the marking of g. (Intuitively,
one can think of xα as the initial monomial of g w.r.t some fixed “hidden” monomial order.) We say
that a polynomial p is reduced with respect to a markedGB when no term of p is divisible by any of
the markings of the elements of G. A subroutine for the reduction of p by a markedGB G is given
on the next page. The output is exactly p≺ (cf. definition A.14), where ≺ is a monomial order with
respect to which G is a Gröbner basis.

Another computational task in the Generic walk is to transform a non-reduced Gröbner basis with
markings to a reduced Gröbner basis (again, with respect to some unknown monomial order). This
can be done by replacing each g ∈ G in the marked basis with its normal form respect to G \ {g}.
If G is inclusion minimal (which is the case for the “lifted” basis computed in the generic walk (cf.
Corollary 2.11, Proposition 5.10) then the markings of output basis can be taken to be those of the
input. In the GroebnerWalk package, the markedGB data type and the algorithms described below
can be found in the markedGB.jl file.
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Algorithm 12 markedGBNormalForm(G, p)

Input: G ▷ A set of marked polynomials of the form (g, xα)
p ▷ a polynomial

Output: pG ▷ A reduced polynomial such that p− pG ∈ ⟨G⟩

r ← 0

while p ̸= 0 do
cγx

γ ← first(Terms(p)) ▷ iterate over terms of p
DivisionOccurred ← False

for (g, xα) in G do
if xα divides xγ then

p ← p− x(γ−α) · g ▷ if some xα divides xγ , use g to eliminate this term
DivisionOccurred ← True

end if
end for

if not DivisionOccurred then ▷ If no xα divides xγ

r ← r + cγ · xγ ▷ push xγ to the remainder
p ← p− cγ · xγ

end if
end while
return r

Algorithm 13 markedGBReduce(G)

Input: G ▷ An inclusion minimal Gröbner basis with markings

Output: G ▷ The marked Gröbner basis G

for (g, xα) ∈ G do
G′ ← G \ {g}
g ← 1

cα
·markedGBNormalForm(G′, g) ▷ Replace g with its normal form and normalize

end for
return G ▷ Return G, keeping the original markings

A.5 Homogeneous ideals

The ideals encountered at faces in the Gröbner fan are of a special kind: they are homogeneous.

Definition A.21. Let ω ∈ Rn.

1. A polynomial f ∈ K[x1, ..., xn, ] is said to be ω-homogeneous if inω(f) = f .

2. An ideal I◁K[x1, .., xn] is ω−homogeneous if it has a generating set consisting of ω-homogeneous
polynomials.

3. We call I homogeneous if it is ω-homogeneous for some ω ∈ Qn≥0.

71



Remark A.22. Let I ◁K[x1, ..., xn] be an ideal and ω ∈ Qn≥0 be a weight vector. The following holds:

• The initial ideal inω(I) is ω-homogeneous.

• Any f can be decomposed into a sum of ω-homogeneous components, grouped by ω-degree.

Example A.23. The ideal

I = ⟨x1 − t5, x2 − t12, x3 − t20⟩ ◁Q[t, x1, x2, x3] (65)

defined in Example 6.6 is ω−homogeneous with respect to the weight vector

ω =
(
1200, 240, 100, 60

)
.

This is a special case of the general observation (63).

In Section 2, we need the following characterization of homogeneous ideals.

Theorem A.24. Let I be an ideal, ω ∈ Rn≥0. The following statements are equivalent:

(i) I is ω-homogeneous.

(ii) For all f ∈ I, the summands of its ω-homogeneous decomposition all lie in I.

(iii) inω(I) = I.

(iv) The reduced Gröbner basis of I w.r.t any monomial order ≺ consists of ω-homogeneous polyno-
mials, i.e.

G≺ = {g1, ..., gs} = {inω(g1), ...inω(gs)}.

Proof. Consult [CLO15, pg. 407].

B Matrix orderings and monomial order matrices

The results in this section describe the correspondence between monomial orders and matrices. We
start by recalling the lexicographic term order on Qn.

Definition B.1. The lexicographic order on Qn is the relation <lex defined as follows:

For u, v,∈ Qn, u <lex v ⇐⇒
k∨
i=1

( i−1∧
j=1

uj = vj

)
∧ ui < vi.

Expressed in words, <lex compares entries of u and v w.r.t the standard ordering on Q until a tie
is broken.

Lemma B.2. <lex is a strict total order on Qn

Proof. It is almost trivial to check that <lex properties (i)− (iv) of a strict total order:

(i) irreflexive: ¬(u <lex u).

(ii) asymmetric: u <lex v =⇒ ¬(v <lex u).

(iii) transitive: u <lex v and v <lex w =⇒ v <lex w.

(iv) connected: u ̸= v =⇒ u <lex v or v <lex u.

For all u, v ∈ Qn.

Via <lex, any matrix A ∈ Qk×n defines a partial order on Qn.
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Definition B.3. For a matrix A ∈ Qk×n the matrix order defined by A is the relation <A on Qn
defined as follows:

For u, v,∈ Qn, u <A v ⇐⇒ Au <lex Av

⇐⇒ (⟨a1, u⟩, ⟨a2, u⟩, ..., ⟨ak, u⟩) <lex (⟨a1, v⟩, ⟨a2, v⟩, ..., ⟨ak, v⟩)

⇐⇒
k∨
i=1

( i−1∧
j=1

⟨ai, u⟩ = ⟨aj , v⟩
)
∧ ⟨ai, u⟩ < ⟨ai, v⟩.

where <lex is the lexicographic order on Qk, and ai is the i−th column of A.

Lemma B.4. If A ∈ Qk×n is a matrix with k ≥ n and rk(A) = n, then <A is a strict total order on
Qn.

Proof. The first three properties of a strict total order follow directly from the fact that <lex is a strict
total order. Connectedness follows from rk(A) = n; as the columns of A are linearly independent,
u ̸= v implies Au ̸= Av, and therefore (by connectedness of <lex), Au <lex Av or Av <lex Au
holds.

If we further require that the first row a1 of A be non-negative, then <A defines a monomial order:

Proposition B.5. Let k ≥ n and A ∈ Qk,n be a matrix of rank n such that its first row a1 ∈ Qn
is not the zero vector and has non-negative entries. The relation ≺A on the set of all monomials of
K[x1, ..., xn] defined by

xβ ≺A xα :⇐⇒ β <A α for all α, β ∈ Nn.

is a monomial order.

Proof. We prove that ≺A fulfills the conditions (i)− (iii) from Definition A.5.
(i): As <A is a strict total order on Qn, so is its restriction on Nn. Thus, by definition, so is ≺A.
(ii): Admissibility follows directly from the the distributive law for matrix-vector multiplication: For
any α, β, γ ∈ Nn

A(β + γ) <lex A(α+ γ) ⇐⇒ Aβ <lex Aα.

(iii): As (i) and (ii) hold, we prove (iii) using the condition in Proposition A.7. For any α ∈ Nn\{0},
we have that

⟨a1, α⟩ > 0 = ⟨a1, 0⟩ =⇒ x0 = 1 ≺ xα

as desired.

Thus, specific kinds of matrices define monomial orders. Conversely, any monomial order may be
represented by a matrix in the following sense:

Proposition B.6. Let ≺ be a monomial order. Then there exists a matrix A ∈ Qm×n such that for
all monomials xα, xβ ∈ K[x1, ..., xn]:

xα ≺ xβ ⇐⇒ xα ≺A xβ .

Proof. Consult [Ovc02, pg.239].
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C Cones and fans

In this section, we provide a refresher of the notions from polyhedral geometry which appear in this
text. For more details, we refer to Chapter 1 of [Zie95].

Definition C.1. Let u ∈ Rn \ {0} and d ∈ R>0.

• The hyperplane in Rn with normal vector u is

Hu :=
{
x ∈ Rn : ⟨x, u⟩ = 0

}
.

• The n− dimensional (closed, positive) half-space defined by u is

H+
u :=

{
x ∈ Rn : ⟨x, u⟩ ≥ 0

}
.

Definition C.2. For m ∈ N, let V = {v1, ..., vm} ⊂ Rn. The (polyhedral) cone over V is the set of
all non-negative linear combinations of elements of V . We write

cone(V ) :=
{
x ∈ Rn : x =

m∑
i=1

λivi for some λ1, ..., λm ∈ R≥0

}
⊂ Rn. (66)

The dimension of cone(V ) is the dimension of the span of V as a vector space. The vectors v1, ..., vm
are often referred to as the rays of the cone.

Remark C.3. cone(V ) is a convex set.

The following theorem provides an important equivalent characterization.

Theorem C.4 (“Main” theorem for cones). Let C ⊂ Rn.
C is a cone in the sense of Definition C.2 if and only if there exists a finite collection of half-spaces
Hu1 , ..., Huk

such that
C = H+

u1
∩H+

u1
∩H+

u2
· · · ∩H+

uk
. (67)

Proof. Consult [Zie95, pg. 30].

For a polyhedral cone C, we refer to a representation of C as in (66) as a V− description, and a
representation as in (67) as an H-description. Faces of cones arise by intersecting with hyperplanes.

Definition C.5. Let C := cone(V ) be a polyhedral cone in Rn.

• A supporting hyperplane to C is a hyperplane Hu with u ∈ Rn \ {0} such that

C = C ∩H+
u (or equivalently, ⟨u, x⟩ ≥ 0 for all x ∈ C).

• A (proper) face of C is a set F of the form

F = C ∩Hu , where Hu is a supporting hyperplane of C.

• The dimension of a face F is the dimension of F as a cone (cf. remark C.7).

• Faces of C of dimension dim(C)− 1 are called facets.

Example C.6. Let

V =

{2
1
0

 ,

1
1
1

 ,

0
2
1

}
=: {v1 , v2 , v3} ⊂ R3.
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The cone over V cone(V ) is depicted below. Its H−description is

cone(V ) = H+
u1
∩H+

u2
∩H+

u3
,

where

u1 =

 1
−2
4

 , u2 =

−12
−1

 , u3 =

 1
1
−2

 .

2

1
2

3

2

v1

v2

v3

x

y

z

Figure 8: The three-dimensional cone over V

The face spanned by v2 and v3 is the intersection of cone(V ) with Hu3
.

2

1
2

3

2

v1

v2

v3

u3

x

y

z

Figure 9: The facet highlighted in red has the normal vector u3.

Remark C.7. Faces of cones are cones. This is a consequence of Theorem C.4.

Remark C.8. Faces of a face F of C are themselves faces of C. Because of this, the faces of C,
together with the set itself and the empty set, form a lattice with respect to the inclusion relation
(cf. [Zie95, pg. 55]).

The cone in example C.6 belongs to a special class: it is a pointed cone.

Definition C.9. Let C ⊂ Rn be a polyhedral cone.

• The lineality space L of C is the largest linear subspace of Rn such that L ⊂ C.

• C is pointed if its lineality space is trivial (i.e. L = {0}).
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Example C.10. The two-dimensional cone

C = cone(
{1

0
0

 ,

−10
0

 ,

0
1
0

}
) ⊂ R3 (68)

is not pointed, as L = span(e1) ⊂ C.

Definition C.11. A polyhedral fan in Rn is a finite collection of non-empty polyhedral cones

F =
{
C1, ..., Cm

}
.

with the following two properties:

(i) Every non-empty face of a cone in F is in F .

(ii) The intersection of any two cones is a face of both.

We say that F is complete if

Rn =
⋃
C∈F

C,

whereas F is said to be pure if all of its maximal cones are of the same dimension. F is pointed
if all of its maximal cones are pointed.

Remark C.12. In contrast to [Zie95], we do not assume polyhedral fans to be complete . This is
because Gröbner fans generally do not have this property. However, Gröbner fans are pure: the
dimension of any maximal cone is n (the number of variables of the polynomial ring).

Remark C.13. Any polyhedral fan F is uniquely determined by its set of maximal cones. All other
cones in the fan are obtained by taking faces.

Example C.14. Let

v1 =

2
1
0

 , v2 =

1
1
1

 , v3 =

0
2
1

 , v4 =

0
1
2

 , v5 =

 2
−1
0

 .

The cone F depicted in fig. 10 is uniquely determined by the maximal cones

C1 = cone({v1, v2, v3} , C2 = cone({v3, v3}) , C3 = cone({v5}).

2

2

2

v1

v2

v3

v4

v5 x

y

z

Figure 10: The fan F from example C.14.

It is a pointed, impure fan in R3.
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D Overview of polynomial systems

We provide references and additional information for the polynomial ideals encountered in this text.

Characteristics

System Reference no. variables max degree |G≺| |G≺′ | dim(I) misc.

chap3 (35) 3 2 3 4 0 (1, 1, 1)-homogeneous
chap4 (40) 3 5 2 4 1 poly’s with up to 65 terms
cyclic5 [BF91] 5 5 5 11 0 -
cyclic6 [BF91] 6 6 6 17 0 -
katsura6 [SK89] 7 7 7 7 0 coeff’s of order up to 1065

newellp1 [Tra04] 5 6 3 39 2 poly’s with up to 982 terms
newellp4 [Tra04] 5 6 3 13 2 poly’s with up to 132 terms
newellp25 [Tra04] 5 6 3 56 2 poly’s with up to 1762 terms
agk4 [AGK97] 5 4 3 29 2 poly’s with up to 388 terms
agk8 [AGK97] 5 4 3 34 2 poly’s with up to 539 terms
randomknap [Now24] 6 789* 5 85* 0 toric, homogeneous
toric [Now24] 7 643* 341* 297* 0 toric, coeff’s are all 1

Table 9: Descriptions of the polynomial systems in this text.

The entry “max degree” is the maximal total degree of a polynomial in the starting basis, whereas
dim(I) refers to the degree of the corresponding algebraic variety. The ideals randomknap and toric

were obtained by running the scripts random knap.m2 and random toric.m2 from the modifiedGWalk
repository once; the values marked by an asterisk will vary each time this script is run.

The ideals in the table are grouped by application. The first group correspond to lexicographic
conversion. Here, the starting order is grevlex and the target order is lex. The second group
correspond to implicitization of 2-dimensional surfaces in R3. In accordance with [Tra04], we choose
to represent the starting and target monomial orders by the following two matrices:

A≺ =


1 1 1 0 0
0 0 0 1 1
0 0 0 1 0
1 1 0 0 0
1 0 0 0 0

 and A≺′ =


0 0 0 1 1
1 1 1 0 0
1 1 0 0 0
1 0 0 0 0
0 0 0 1 0

 , (69)

where the variables are in the order x, y, z, u, v. This allows for the possibility of a computation
of an elimination term order in fewer steps compared to, e.g. the monomial order grevlex refined by
the vector (0, 0, 0, 1, 1). We refer to [Tra04, pg.842] for more details on why this is the case.

Finally, the last two ideals are toric ideals, which were generated randomly according to Section 6.3.
The starting and target orders of the conversions are grevlex and glex respectively.
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